ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient LMXBs that host neutron stars (NSs) provide excellent laboratories for probing the dense matter physics present in NS crusts. During accretion outbursts in LMXBs, exothermic reactions may heat the NS crust, disrupting the crust-core equilib rium. When the outburst ceases, the crust cools to restore thermal equilibrium with the core. Monitoring this evolution allows us to probe the dense matter physics in the crust. Properties of the deeper crustal layers can be probed at later times after the end of the outburst. We report on the unexpected late-time temperature evolution (>2000 days after the end of their outbursts) of two NSs in LMXBs, XTE J1701-462 and EXO 0748-676. Although both these sources exhibited very different outbursts (in terms of duration and the average accretion rate), they exhibit an unusually steep decay of ~7 eV in the observed effective temperature (occurring in a time span of ~700 days) around ~2000 days after the end of their outbursts. Furthermore, they both showed an even more unexpected rise of ~3 eV in temperature (over a time period of ~500-2000 days) after this steep decay. This rise was significant at the 2.4{sigma} and 8.5{sigma} level for XTE J1701-462 and EXO 0748-676, respectively. The physical explanation for such behaviour is unknown and cannot be straightforwardly be explained within the cooling hypothesis. In addition, this observed evolution cannot be well explained by low-level accretion either without invoking many assumptions. We investigate the potential pathways in the theoretical heating and cooling models that could reproduce this unusual behaviour, which so far has been observed in two crust-cooling sources. Such a temperature increase has not been observed in the other NS crust-cooling sources at similarly late times, although it cannot be excluded that this might be a result of the inadequate sampling obtained at such late times.
In 2017, the Be/X-ray transient 4U 0115+63 exhibited a new type-II outburst that was two times fainter than its 2015 giant outburst (in the Swift/BAT count rates). Despite this difference between the two bright events, the source displayed similar X- ray behaviour after these periods. Once the outbursts ceased, the source did not transit towards quiescence directly, but was detected about a factor of 10 above its known quiescent level. It eventually decayed back to quiescence over time scales of months. In this paper we present the results of our Swift monitoring campaign, and an XMM-Newton observation of 4U 0115+63 during the decay of the 2017 type-II outburst, and its subsequent low-luminosity behaviour. We discuss the possible origin of the decaying source emission at this low-level luminosity, which has now been shown as a recurrent phenomenon, in the framework of the two proposed scenarios to explain this faint state: cooling from an accretion-heated neutron-star crust or continuous low-level accretion. In addition, we compare the outcome of our study with the results we obtained from the 2015/2016 monitoring campaign on this source.
Transient neutron star (NS) LMXBs undergo episodes of accretion, alternated with quiescent periods. During an accretion outburst, the NS heats up due to exothermic accretion-induced processes taking place in the crust. Besides the long-known deep cru stal heating of nuclear origin, a likely non-nuclear source of heat, dubbed shallow heating, is present at lower densities. Most of the accretion-induced heat slowly diffuses into the core on a timescale of years. Over many outburst cycles, a state of equilibrium is reached when the core temperature is high enough that the heating and cooling (photon and neutrino emission) processes are in balance. We investigate how stellar characteristics and outburst properties affect the long-term temperature evolution of a transiently accreting NS. For the first time the effects of crustal properties are considered, particularly that of shallow heating. Using our code NSCool, we tracked the thermal evolution of a NS undergoing outbursts over a period of $10^5$ yr. The outburst sequence is based on the regular outbursts observed from Aql X-1. For each model, we calculated the timescale over which equilibrium was reached and we present these timescales along with the temperature and luminosity parameters of the equilibrium state. We find that shallow heating significantly contributes to the equilibrium state. Increasing its strength raises the equilibrium core temperature. We find that if deep crustal heating is replaced by shallow heating alone, the core would still heat up, reaching only a 2% lower equilibrium core temperature. Deep crustal heating may therefore not be vital to the heating of the core. Additionally, shallow heating can increase the quiescent luminosity to values higher than previously expected.
The main outburst of the candidate black hole low-mass X-ray binary (BH LMXB) MAXI J1535-571 ended in 2018 May and was followed by at least five episodes of re-brightenings. We have monitored this re-brightening phenomenon at X-ray and radio waveleng ths using the {it Neil Gehrels Swift Observatory} and Australia Telescope Compact Array, respectively. The first two re-brightenings exhibited a high peak X-ray luminosity (implying a high mass accretion rate) and were observed to transition from the hard to the soft state. However, unlike the main outburst, these re-brightenings did not exhibit clear hysteresis. During the re-brightenings, when MAXI J1535-571 was in the hard state, we observed the brightening of a compact radio jet which was subsequently quenched when the source transitioned to a similar soft state as was observed during the main outburst. We report on the first investigation of disk-jet coupling over multiple rapidly evolving re-brightenings in a BH LMXB. We find that the accretion flow properties and the accompanying compact jet evolve on a similarly rapid time scale of ~days rather than the typical value of ~weeks as observed for most other BH LMXBs during their main outburst events.
We present our Swift monitoring campaign of the slowly rotating neutron star Be/X-ray transient GX 304-1 (spin period of ~275 s) when the source was not in outburst. We found that between its type-I outbursts the source recurrently exhibits a slowly decaying low-luminosity state (with luminosities of 10^(34-35) erg/s). This behaviour is very similar to what has been observed for another slowly rotating system, GRO J1008-57. For that source, this low-luminosity state has been explained in terms of accretion from a non-ionised (cold) accretion disk. Due to the many similarities between both systems, we suggest that GX 304-1 enters a similar accretion regime between its outbursts. The outburst activity of GX 304-1 ceased in 2016. Our continued monitoring campaign shows that the source is in a quasi-stable low-luminosity state (with luminosities a few factors lower than previously seen) for at least one year now. Using our NuSTAR observation in this state, we found pulsations at the spin period, demonstrating that the X-ray emission is due to accretion of matter onto the neutron star surface. If the accretion geometry during this quasi-stable state is the same as during the cold-disk state, then matter indeed reaches the surface (as predicted) during this latter state. We discuss our results in the context of the cold-disk accretion model.
The All Sky Automated Survey for SuperNovae (ASAS-SN) reported a possible Galactic dwarf nova ASASSN-18fs on 2018 March 19 at $sim$13.2 mag in the V band, with a quiescent magnitude of V$>$17.6. Here we report on the follow-up photometry using the {it Neil Gehrels Swift Observatory}.
Monitoring the cooling of neutron-star crusts heated during accretion outbursts allows us to infer the physics of the dense matter present in the crust. We examine the crust cooling evolution of the low-mass X-ray binary MXB 1659-29 up to ~505 days a fter the end of its 2015 outburst (hereafter outburst II) and compare it with what we observed after its previous 1999 outburst (hereafter outburst I) using data obtained from the Swift, XMM-Newton, and Chandra observatories. The observed effective surface temperature of the neutron star in MXB 1659-29 dropped from ~92 eV to ~56 eV from ~12 days to ~505 days after the end of outburst II. The most recently performed observation after outburst II suggests that the crust is close to returning to thermal equilibrium with the core. We model the crust heating and cooling for both its outbursts collectively to understand the effect of parameters that may change for every outburst (e.g., the average accretion rate, the length of outburst, the envelope composition of the neutron star at the end of the outburst) and those which can be assumed to remain the same during these two outbursts (e.g., the neutron star mass, its radius). Our modelling indicates that all parameters were consistent between the two outbursts with no need for any significant changes. In particular, the strength and the depth of the shallow heating mechanism at work (in the crust) were inferred to be the same during both outbursts, contrary to what has been found when modelling the cooling curves after multiple outburst of another source, MAXI J0556-332. This difference in source behaviour is not understood. We discuss our results in the context of our current understanding of cooling of accretion-heated neutron-star crusts, and in particular with respect to the unexplained shallow heating mechanism.
The Be/X-ray transient GRO J1750-27 exhibited a type-II (giant) outburst in 2015. After the source transited to quiescence, we triggered our multi-year Chandra monitoring programme to study its quiescent behaviour. The programme was designed to follo w the cooling of a potentially heated neutron-star crust due to accretion of matter during the preceding outburst, similar to what we potentially have observed before in two other Be/X-ray transients, namely 4U 0115+63 and V 0332+53. However, unlike for these other two systems, we do not find any strong evidence that the neutron-star crust in GRO J1750-27 was indeed heated during the accretion phase. We detected the source at a rather low X-ray luminosity (~10^33 erg/s) during only three of our five observations. When the source was not detected it had very low-luminosity upper limits (<10^32 erg/s; depending on assumed spectral model). We interpret these detections and the variability observed as emission likely due to very low-level accretion onto the neutron star. We also discuss why the neutron-star crust in GRO J1750-27 might not have been heated while the ones in 4U 0115+63 and V 0332+53 possibly were.
MASTER OT 075353.88+174907.6 was a blue optical transient reported by the MASTER-Net project on 2017 Oct 31. This source was previously detected by {it GALEX} in its NUV band but not by the Sloan Digital Sky Survey (in the optical). We carried out mu ltiwavelength follow-up observations of this source during its 2017 outburst using {it Swift} and RATIR. The source was found to be $gtrsim$4.4 mag above its quiescent level during the peak of the outburst and the outburst lasted $gtrsim$19 days. Our observations suggest that it was a superoutburst of a long orbital period U Geminorum type dwarf nova system. The spectral energy distribution during the initial slow decay phase of the outburst was consistent with a disk-dominated spectra (having spectral indices $Gamma ! sim$1.5--2.3). After this phase, the UV flux decreased slower than the optical and the spectral energy distribution was very steep with indices $Gamma ! sim$3.7$pm$0.7. This slow decay in the UV may be the emission from a cooling white dwarf heated during the outburst. The spectral shape determined from the assumed pre-outburst quiescent level was also steep ($Gamma ! gtrsim$2.5) indicating that the white dwarf is still hot in quiescence (even after the cooling due to the potential accretion-induced heating has halted). No X-ray emission was detected from the source since it is likely located at a large distance $>$2.3 kpc.
We report on two new quiescent {it XMM-Newton} observations (in addition to the earlier {it Swift}/XRT and {it XMM-Newton} coverage) of the cooling neutron star crust in the low-mass X-ray binary 1RXS J180408.9$-$342058. Its crust was heated during t he $sim$4.5 month accretion outburst of the source. From our quiescent observations, fitting the spectra with a neutron star atmosphere model, we found that the crust had cooled from $sim$ 100 eV to $sim$73 eV from $sim$8 days to $sim$479 days after the end of its outburst. However, during the most recent observation, taken $sim$860 days after the end of the outburst, we found that the crust appeared not to have cooled further. This suggested that the crust had returned to thermal equilibrium with the neutron star core. We model the quiescent thermal evolution with the theoretical crustal cooling code NSCool and find that the source requires a shallow heat source, in addition to the standard deep crustal heating processes, contributing $sim$0.9 MeV per accreted nucleon during outburst to explain its observed temperature decay. Our high quality {it XMM-Newton} data required an additional hard component to adequately fit the spectra. This slightly complicates our interpretation of the quiescent data of 1RXS J180408.9$-$342058. The origin of this component is not fully understood.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا