ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength observations of MASTER OT 075353.88+174907.6: a likely superoutburst of a long period dwarf nova system

372   0   0.0 ( 0 )
 نشر من قبل Aastha Parikh
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MASTER OT 075353.88+174907.6 was a blue optical transient reported by the MASTER-Net project on 2017 Oct 31. This source was previously detected by {it GALEX} in its NUV band but not by the Sloan Digital Sky Survey (in the optical). We carried out multiwavelength follow-up observations of this source during its 2017 outburst using {it Swift} and RATIR. The source was found to be $gtrsim$4.4 mag above its quiescent level during the peak of the outburst and the outburst lasted $gtrsim$19 days. Our observations suggest that it was a superoutburst of a long orbital period U Geminorum type dwarf nova system. The spectral energy distribution during the initial slow decay phase of the outburst was consistent with a disk-dominated spectra (having spectral indices $Gamma ! sim$1.5--2.3). After this phase, the UV flux decreased slower than the optical and the spectral energy distribution was very steep with indices $Gamma ! sim$3.7$pm$0.7. This slow decay in the UV may be the emission from a cooling white dwarf heated during the outburst. The spectral shape determined from the assumed pre-outburst quiescent level was also steep ($Gamma ! gtrsim$2.5) indicating that the white dwarf is still hot in quiescence (even after the cooling due to the potential accretion-induced heating has halted). No X-ray emission was detected from the source since it is likely located at a large distance $>$2.3 kpc.

قيم البحث

اقرأ أيضاً

82 - E.Pavlenko , T.Kato , K.Antonyuk 2021
A CCD photometry of the dwarf nova MASTER OT J172758.09 +380021.5 was carried out in 2019 during 134 nights. Observations covered three superoutbursts, five normal outbursts and quiescence between them. The available ASASSN and ZTF data for 2014-2020 were also examined. Spectral observations were done in 2020 when the object was in quiescence. Spectra and photometry revealed that the star is an H-rich active ER UMa-type dwarf nova with a highly variable supercycle of ~50-100 d that implies a high and variable mass-transfer rate. This object demonstrated peculiar behaviour: short-lasted superoutbursts (a week); a slow superoutburst decline and cases of rebrightenings; low frequency (from none to a few) of the normal outbursts during the supercycle. In 2019 a mean period of positive superhumps was found to be 0.05829 d during the superoutbursts. Late superhumps with a mean period of 0.057915 d which lasted about ~20 d after the end of superoutburst and were replaced by an orbital period of 0.057026 d or its orbital-negative superhump beat period were detected. An absence of eclipse in the orbital light curve and its moderate amplitude are consistent with the orbital inclination of about 40 degr found from spectroscopy. The blue peaks of the V-Ic and B-Rc of superhumps during the superoutburst coincided with minima of the light curves, while B-Rc of the late superhumps coincided with a rising branch of the light curves. We found that a low mass ratio q=0.08 could explain most of the peculiarities of this dwarf nova. The mass-transfer rate should be accordingly higher than what is expected from gravitational radiation only, this assumes the object is in a post-nova state and underwent a nova eruption relatively recently -- hundreds of years ago. This object would provide probably the first observational evidence that a nova eruption can occur even in CVs near the period minimum.
We report on a superoutburst of a WZ Sge-type dwarf nova (DN), ASASSN-15po. The light curve showed the main superoutburst and multiple rebrightenings. In this outburst, we observed early superhumps and growing (stage A) superhumps with periods of 0.0 50454(2) and 0.051809(13) d, respectively. We estimated that the mass ratio of secondary to primary ($q$) is 0.0699(8) by using $P_{rm orb}$ and a superhump period $P_{rm SH}$ of stage A. ASASSN-15po [$P_{rm orb} sim$ 72.6 min] is the first DN with the orbital period between 67--76 min. Although the theoretical predicted period minimum $P_{rm min}$ of hydrogen-rich cataclysmic variables (CVs) is about 65--70 min, the observational cut-off of the orbital period distribution at 80 min implies that the period minimum is about 82 min, and the value is widely accepted. We suggest the following four possibilities: the object is (1) a theoretical period minimum object (2) a binary with a evolved secondary (3) a binary with a metal-poor (Popullation II) seconday (4) a binary which was born with a brown-dwarf donor below the period minimum.
We report K2 observations of the eclipsing cataclysmic variable V729 Sgr which covered nearly 80 days in duration. We find five short outbursts and two long outbursts, one of which shows a clear plateau phase in the rise to maximum brightness. The me an time between successive short outbursts is ~10 d while the time between the two long outbursts is ~38 d. The frequency of these outbursts are unprecedented for a CV above the orbital period gap. We find evidence that the mid-point of the eclipse occurs systematically earlier in outburst than in quiescence. During five of the six quiescent epochs we find evidence for a second photometric period which is roughly 5 percent shorter than the 4.16 h orbital period which we attribute to negative superhumps. V729 Sgr is therefore one of the longest period CVs to show negative superhumps during quiescence.
Results of the CCD observations of CzeV404 Her are displayed. During the season of June-August 2014 we detected one outburst and one superoutburst of the star. Clear superhumps with the period of P_sh=0.10472(2) days were observed. The superhump peri od was decreasing with a high value of P_dot=-2.43(8) x 10^(-4). For 17 eclipses, we calculated an orbital period with the value of P_orb=0.0980203(6) days which indicates that CzeV404 Her belongs to period gap objects and it is the longest orbital period eclipsing SU UMa star. Based on superhump and orbital period determinations, the period excess 6.8 % +/- 0.02 % and the mass ratio q ~ 0.32 of the system were obtained.
We report on photometric observations of WZ Sge-type dwarf novae, MASTER OT J211258.65+242145.4 and MASTER OT J203749.39+552210.3 which underwent outbursts in 2012. Early superhumps were recorded in both systems. During superoutburst plateau, ordinar y superhumps with a period of 0.060291(4) d (MASTER J211258) and of 0.061307(9) d (MASTER J203749) in average were observed. MASTER J211258 and MASTER J203749 exhibited eight and more than four post-superoutburst rebrightenings, respectively. In the final part of the superoutburst, an increase in the superhump periods was seen in both systems. We have made a survey of WZ Sge-type dwarf novae with multiple rebrightenings, and confirmed that the superhump periods of WZ Sge-type dwarf novae with multiple rebrightenings were longer than those of WZ Sge-type dwarf novae without a rebrightening. Although WZ Sge-type dwarf novae with multiple rebrightenings have been thought to be the good candidates for period bouncers based on their low mass ratio (q) from inferred from the period of fully grown (stage B) superhumps, our new method using the period of growing superhumps (stage A superhumps), however, implies higher q than those expected from stage B superhumps. These q values appear to be consistent with the duration of the stage A superoutbursts, which likely reflects the growth time of the 3:1 resonance. We present a working hypothesis that the small fractional superhump excesses for stage B superhumps in these systems may be explained as a result that a higher gas pressure effect works in these systems than in ordinary SU UMa-type dwarf novae. This result leads to a new picture that WZ Sge-type dwarf novae with multiple rebrightenings and SU UMa-type dwarf novae without a rebrightening (they are not period bouncers) are located in the same place on the evolutionary track.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا