ﻻ يوجد ملخص باللغة العربية
Transient LMXBs that host neutron stars (NSs) provide excellent laboratories for probing the dense matter physics present in NS crusts. During accretion outbursts in LMXBs, exothermic reactions may heat the NS crust, disrupting the crust-core equilibrium. When the outburst ceases, the crust cools to restore thermal equilibrium with the core. Monitoring this evolution allows us to probe the dense matter physics in the crust. Properties of the deeper crustal layers can be probed at later times after the end of the outburst. We report on the unexpected late-time temperature evolution (>2000 days after the end of their outbursts) of two NSs in LMXBs, XTE J1701-462 and EXO 0748-676. Although both these sources exhibited very different outbursts (in terms of duration and the average accretion rate), they exhibit an unusually steep decay of ~7 eV in the observed effective temperature (occurring in a time span of ~700 days) around ~2000 days after the end of their outbursts. Furthermore, they both showed an even more unexpected rise of ~3 eV in temperature (over a time period of ~500-2000 days) after this steep decay. This rise was significant at the 2.4{sigma} and 8.5{sigma} level for XTE J1701-462 and EXO 0748-676, respectively. The physical explanation for such behaviour is unknown and cannot be straightforwardly be explained within the cooling hypothesis. In addition, this observed evolution cannot be well explained by low-level accretion either without invoking many assumptions. We investigate the potential pathways in the theoretical heating and cooling models that could reproduce this unusual behaviour, which so far has been observed in two crust-cooling sources. Such a temperature increase has not been observed in the other NS crust-cooling sources at similarly late times, although it cannot be excluded that this might be a result of the inadequate sampling obtained at such late times.
X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent
We present VLT intermediate resolution spectroscopy of UY Vol, the optical counterpart of the LMXB X-ray burster EXO 0748-676. By using Doppler tomography we detect narrow components within the broad He II 4542 A, 4686 A and 5412 A emission lines. Th
We analyse four XMM-Newton observations of the neutron-star low-mass X-ray binary EXO 0748$-$676 in quiescence. We fit the spectra with an absorbed neutron-star atmosphere model, without the need for a high-energy (power-law) component; with a 95 per
The neutron-star X-ray transient XTE J1701-462 was observed for $sim$3 Ms with xte during its 2006-2007 outburst. Here we report on the discovery of three type-I X-ray bursts from XTE J1701-462. They occurred as the source was in transition from the
Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analyzed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron-star atmosphere models. From the fi