ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconformal anomalies provide an elegant and economical way to understand the soft breaking parameters in SUSY models; however, implementing them leads to the several undesirable features including: tachyonic sleptons and electroweak symmetry brea king problems in both the MSSM and the NMSSM. Since these two theories also have the additonal problem of massless neutrinos, we have reconsidered the AMSB problems in a class of models that extends the NMSSM to explain small neutrino masses via the seesaw mechanism. In a recent paper, we showed that for a class of minimal left-right extensions, a built-in mechanism exists which naturally solves the tachyonic slepton problem and provides new alternatives to the MSSM that also have automatic R-parity conservation. In this paper, we discuss how electroweak symmetry breaking arises in this model through an NMSSM-like low energy theory with a singlet VEV, induced by the structure of the left-right extension and of the right magnitude. We then study the phenomenological issues and find: the LSP is an Higgsino-wino mix, new phenomenology for chargino decays to the LSP, degenerate same generation sleptons and a potential for a mild squark-slepton degeneracy. We also discuss possible collider signatures and the feasibility of dark matter in this model.
We show that an intermediate scale supersymmetric left-right seesaw scenario with automatic R-parity conservation can cure the problem of tachyonic slepton masses that arises when supersymmetry is broken by anomaly mediation, while preserving ultravi olet insensitivity. The reason for this is the existence of light B - L = 2 higgses with yukawa couplings to the charged leptons. We find these theories to have distinct predictions compared to the usual mSUGRA and gauge mediated models as well as the minimal AMSB models. Such predictions include a condensed gaugino mass spectrum and possibly a correspondingly condensed sfermion spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا