ترغب بنشر مسار تعليمي؟ اضغط هنا

We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected i n all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 d period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a co-rotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.
83 - K. T. Hole , R. Ignace 2012
Line ratios in fir triplets of helium-like ions have proven to be a powerful diagnostic of conditions in X-ray emitting gas surrounding massive stars. Recent observations indicate that these ratios can be variable with time. The possible causes of variation in line ratios are limited: changes in the radiation field or changes in density, and changes in mass-loss or geometry. In this paper, we investigate the ability of changes in the radiation field to induce variability in the ratio R=f/i. To isolate the radiative effect, we use a heuristic model of temperature and radius changes in variable stars in the B and O range with low-density, steady-state winds. We model the changes in emissivity of X-ray emitting gas close to the star due to differences in level-pumping from available UV photons at the location of the gas. We find that under these conditions, variability in R is dominated by the stellar temperature. Although the relative amplitude of variability is roughly comparable for most lines at most temperatures, detectable variations are limited to a few lines for each spectral type. We predict that variable values in R due to stellar variability must follow predictable trends found in our simulations. Our model uses radial pulsations as a mode of stellar variability that maximizes the amplitude of variation in R. This model is robust enough to show which ions will provide the best opportunity for observing variability in the f/i ratio at different stellar temperatures, and the correlation of that variability with other observable parameters. In real systems, the effects would be more complex than in our model, with differences in phase and suppressed amplitude in the presence of non-radial pulsations. This suggests that changes in R across many lines concurrently are not likely to be produced by a variable radiation field.
Aims: This paper extends previous studies in modeling time varying linear polarization due to axisymmetric magnetic fields in rotating stars. We use the Hanle effect to predict variations in net line polarization, and use geometric arguments to gener alize these results to linear polarization due to other mechanisms. Methods: Building on the work of Lopez Ariste et al., we use simple analytic models of rotating stars that are symmetric except for an axisymmetric magnetic field to predict the polarization lightcurve due to the Hanle effect. We highlight the effects for the variable line polarization as a function of viewing inclination and field axis obliquity. Finally, we use geometric arguments to generalize our results to linear polarization from the weak transverse Zeeman effect. Results: We derive analytic expressions to demonstrate that the variable polarization lightcurve for an oblique magnetic rotator is symmetric. This holds for any axisymmetric field distribution and arbitrary viewing inclination to the rotation axis. Conclusions: For the situation under consideration, the amplitude of the polarization variation is set by the Hanle effect, but the shape of the variation in polarization with phase depends largely on geometrical projection effects. Our work generalizes the applicability of results described in Lopez Ariste et al., inasmuch as the assumptions of a spherical star and an axisymmetric field are true, and provides a strategy for separating the effects of perspective from the Hanle effect itself for interpreting polarimetric lightcurves.
We calculate the circularly polarized Stokes V profile for emission lines, formed in hot-star winds threaded with a weak radial magnetic field. For simplicity, the field is treated as a split monopole under the assumptions that it has been radially c ombed by the wind, and rotation is not playing a central role. Invoking the weak-field approximation, we find that the V profile has a characteristic ``heartbeat shape exhibiting multiple sign
We report on observations of the eclipsing and interacting binary beta Lyrae from the Suzaku X-ray telescope. This system involves an early B star embedded in an optically and geometrically thick disk that is siphoning atmospheric gases from a less m assive late B II companion. Motivated by an unpublished X-ray spectrum from the Einstein X-ray telescope suggesting unusually hard emission, we obtained time with Suzaku for pointings at three different phases within a single orbit. From the XIS detectors, the softer X-ray emission appears typical of an early-type star. What is surprising is the remarkably unchanging character of this emission, both in luminosity and in spectral shape, despite the highly asymmetric geometry of the system. We see no eclipse effect below 10 keV. The constancy of the soft emission is plausibly related to the wind of the embedded B star and Thomson scattering of X-rays in the system, although it might be due to extended shock structures arising near the accretion disk as a result of the unusually high mass-transfer rate. There is some evidence from the PIN instrument for hard emission in the 10-60 keV range. Follow-up observations with the RXTE satellite will confirm this preliminary detection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا