ترغب بنشر مسار تعليمي؟ اضغط هنا

The Zeeman Effect in the Sobolev Approximation II: Split Monopole Fields and the Heartbeat Stokes V Profile

287   0   0.0 ( 0 )
 نشر من قبل Kenneth Gayley
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the circularly polarized Stokes V profile for emission lines, formed in hot-star winds threaded with a weak radial magnetic field. For simplicity, the field is treated as a split monopole under the assumptions that it has been radially combed by the wind, and rotation is not playing a central role. Invoking the weak-field approximation, we find that the V profile has a characteristic ``heartbeat shape exhibiting multiple sign

قيم البحث

اقرأ أيضاً

69 - C. Erba , V. Petit , K. Gayley 2021
Approximately 7% of massive stars host stable surface magnetic fields that are strong enough to alter stellar evolution through their effect on the stellar wind. It is therefore crucial to characterize the strength and structure of these large-scale fields in order to quantify their influence on massive star evolution. This is traditionally done by measuring the circular polarization caused by Zeeman splitting in optical photospheric lines, but we investigate here the possibility of detecting Stokes $V$ signatures in the wind-sensitive resonance lines formed in magnetically confined winds in the high opacity ultraviolet (UV) domain. This unique diagnostic would be accessible to high-sensitivity spaceborne UV spectropolarimeters such as POLSTAR.
The measurement of Zeeman splitting in spectral lines---both in emission and absorption---can provide direct estimates of the magnetic field strength and direction in atomic and molecular clouds, both in our own Milky Way and in external galaxies. Th is method will probe the magnetic field in the warm and cold neutral components of the interstellar medium, providing a complement to the extensive SKA Faraday studies planning to probe the field in the ionized components.
We characterize the extreme heartbeat star system MACHO 80.7443.1718 in the LMC using TESS photometry and spectroscopic observations from the Magellan Inamori Kyocera Echelle (MIKE) and SOAR Goodman spectographs. MACHO 80.7443.1718 was first identifi ed as a heartbeat star system in the All-Sky Automated Survey for SuperNovae (ASAS-SN) with $P_{rm orb}=32.836pm0.008,{rm d}$. MACHO 80.7443.1718 is a young (${sim}6$~Myr), massive binary, composed of a B0 Iae supergiant with $M_1 simeq 35 M_odot$ and an O9.5V secondary with $M_2 simeq 16 M_odot$ on an eccentric ($e=0.51pm0.03$) orbit. In addition to having the largest variability amplitude amongst all known heartbeats stars, MACHO 80.7443.1718 is also one of the most massive heartbeat stars yet discovered. The B[e] supergiant has Balmer emission lines and permitted/forbidden metallic emission lines associated with a circumstellar disk. The disk rapidly dissipates at periastron which could indicate mass transfer to the secondary, but re-emerges immediately following periastron passage. MACHO 80.7443.1718 also shows tidally excited oscillations at the $N=25$ and $N=41$ orbital harmonics and has a rotational period of 4.4 d.
64 - D. Shulyak 2010
We present first quantitative results of the surface magnetic field measurements in selected M-dwarfs based on detailed spectra synthesis conducted simultaneously in atomic and molecular lines of the FeH Wing-Ford $F^4,Delta-X^4,Delta$ transitions. A modified version of the Molecular Zeeman Library (MZL) was used to compute Lande g-factors for FeH lines in different Hunds cases. Magnetic spectra synthesis was performed with the Synmast code. We show that the implementation of different Hunds case for FeH states depending on their quantum numbers allows us to achieve a good fit to the majority of lines in a sunspot spectrum in an automatic regime. Strong magnetic fields are confirmed via the modelling of atomic and FeH lines for three M-dwarfs YZ~CMi, EV~Lac, and AD~Leo, but their mean intensities are found to be systematically lower than previously reported. A much weaker field ($1.7-2$~kG against $2.7$~kG) is required to fit FeH lines in the spectra of GJ~1224. Our method allows us to measure average magnetic fields in very low-mass stars from polarized radiative transfer. The obtained results indicate that the fields reported in earlier works were probably overestimated by about $15-30$%. Higher quality observations are needed for more definite results.
This paper summarizes the project work on asteroseismology at the ERASMUS+ GATE 2020 Summer school on space satellite data. The aim was to do a global asteroseismic analysis of KIC 5006817 and quantify its stellar properties using the high-quality, s tate of the art space missions data. We employed the aperture photometry to analyze the data from the Kepler space telescope and the Transiting Exoplanet Survey Satellite (TESS). Using the lightkurve Python package, we have derived the asteroseismic parameters and calculated the stellar parameters using the scaling relations. Our analysis of KIC 5006817 confirmed its classification as a heartbeat binary. The rich oscillation spectrum facilitate estimating power excess ($ u_{rm max}$) at 145.50$pm$0.50 $mu$Hz and large frequency separation ($Delta u$) to be 11.63$pm$0.10 $mu$Hz. Our results showed that the primary component is a low-luminosity, red-giant branch star with a mass, radius, surface gravity, and luminosity of 1.53$pm$0.07 M$_odot$, 5.91$pm$0.12 R$_odot$, 3.08$pm$0.01 dex, and 19.66$pm$0.73 L$_odot$, respectively. The orbital period of the system is 94.83$pm$0.05 d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا