ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability in X-ray line ratios in helium-like ions of massive stars: the radiation-driven case

84   0   0.0 ( 0 )
 نشر من قبل K. Tabetha Hole
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Line ratios in fir triplets of helium-like ions have proven to be a powerful diagnostic of conditions in X-ray emitting gas surrounding massive stars. Recent observations indicate that these ratios can be variable with time. The possible causes of variation in line ratios are limited: changes in the radiation field or changes in density, and changes in mass-loss or geometry. In this paper, we investigate the ability of changes in the radiation field to induce variability in the ratio R=f/i. To isolate the radiative effect, we use a heuristic model of temperature and radius changes in variable stars in the B and O range with low-density, steady-state winds. We model the changes in emissivity of X-ray emitting gas close to the star due to differences in level-pumping from available UV photons at the location of the gas. We find that under these conditions, variability in R is dominated by the stellar temperature. Although the relative amplitude of variability is roughly comparable for most lines at most temperatures, detectable variations are limited to a few lines for each spectral type. We predict that variable values in R due to stellar variability must follow predictable trends found in our simulations. Our model uses radial pulsations as a mode of stellar variability that maximizes the amplitude of variation in R. This model is robust enough to show which ions will provide the best opportunity for observing variability in the f/i ratio at different stellar temperatures, and the correlation of that variability with other observable parameters. In real systems, the effects would be more complex than in our model, with differences in phase and suppressed amplitude in the presence of non-radial pulsations. This suggests that changes in R across many lines concurrently are not likely to be produced by a variable radiation field.

قيم البحث

اقرأ أيضاً

102 - R. Ignace , Z. Damrau , K. T. Hole 2019
High spectral resolution and long exposure times are providing unprecedented levels of data quality of massive stars at X-ray wavelengths. A key diagnostic of the X-ray emitting plasma are the fir lines for He-like triplets. In particular, owing to r adiative pumping effects, the forbidden-to-intercombination line luminosity ratio, R=f/i, can be used to determine the proximity of the hot plasma to the UV-bright photospheres of massive stars. Moreover, the era of large observing programs additionally allows for investigation of line variability. This contribution is the second to explore how variability in the line ratio can provide new diagnostic information about distributed X-rays in a massive star wind. While there are many ways to drive variability in the line ratio, we use variable mass loss as an illustrative example. The f/i ratio can be significantly modulated owing to evolving wind properties. We evaluate how variable mass loss might bias measures of f/i.
We present two self-consistent procedures that couple the hydrodynamics with calculations of the line-force in the frame of radiation wind theory. These procedures give us the line-force parameters, the velocity field, and the mass-loss rate. The fir st one is based on the so-called m-CAK theory. A full set of line-force parameters for $T_text{eff}ge 32,000$ K and surface gravities higher than 3.4 dex for two different metallicities are presented, along with their corresponding wind parameters. We find that the dependence of line-force parameters on effective temperature is enhanced by the dependence on $log g$. For the case of homogeneous winds (without clumping) comparison of self-consistent mass-loss rates shows a good agreement with empirical values. We also consider self-consistent wind solutions that are used as input in FASTWIND to calculate synthetic spectra. By comparison with the observed spectra for three stars with clumped winds, we found that varying the clumping factor the synthetic spectra rapidly converge into the neighbourhood region of the solution. Therefore, this self-consistent m-CAK procedure significantly reduces the number of free parameters needed to obtain a synthetic spectrum. The second procedure (called Lambert-procedure) provides a self-consistent solution beyond m-CAK theory, and line-acceleration is calculated by the full NLTE radiative transfer code CMFGEN. Both the mass-loss rate and the clumping factor are set as free parameters, hence their values are obtained by spectral fitting after the respective self-consistent hydrodynamics is calculated. Since performing the Lambert-procedure requires significant computational power, the analysis is made only for the star z-Puppis. The promising results gives a positive balance about the future applications for the self-consistent solutions presented on this thesis.
128 - I. Araya , A. Christen , M. Cure 2021
Accurate mass-loss rates and terminal velocities from massive stars winds are essential to obtain synthetic spectra from radiative transfer calculations and to determine the evolutionary path of massive stars. From a theoretical point of view, analyt ical expressions for the wind parameters and velocity profile would have many advantages over numerical calculations that solve the complex non-linear set of hydrodynamic equations. In a previous work, we obtained an analytical description for the fast wind regime. Now, we propose an approximate expression for the line-force in terms of new parameters and obtain a velocity profile closed-form solution (in terms of the Lambert $W$ function) for the $delta$-slow regime. Using this analytical velocity profile, we were able to obtain the mass-loss rates based on the m-CAK theory. Moreover, we established a relation between this new set of line-force parameters with the known stellar and m-CAK line-force parameters. To this purpose, we calculated a grid of numerical hydrodynamical models and performed a multivariate multiple regression. The numerical and our descriptions lead to good agreement between their values.
We present preliminary results of the first near-infrared variability study of the Arches cluster, using adaptive optics data from NIRI/Gemini and NACO/VLT. The goal is to discover eclipsing binaries in this young (2.5 +- 0.5 Myr), dense, massive clu ster for which we will determine accurate fundamental parameters with subsequent spectroscopy. Given that the Arches cluster contains more than 200 Wolf-Rayet and O-type stars, it provides a rare opportunity to determine parameters for some of the most massive stars in the Galaxy.
121 - G. Rauw , Y. Naze , N.J. Wright 2014
We report on the analysis of the Chandra-ACIS data of O, B and WR stars in the young association Cyg OB2. X-ray spectra of 49 O-stars, 54 B-stars and 3 WR-stars are analyzed and for the brighter sources, the epoch dependence of the X-ray fluxes is in vestigated. The O-stars in Cyg,OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: log(Lx/Lbol) = -7.2 +/- 0.2. This relation is in excellent agreement with the one previously derived for the Carina OB1 association. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between Lx and Lbol. Out of the three WR stars in Cyg OB2, probably only WR144 is itself responsible for the observed level of X-ray emission, at a very low log(Lx/Lbol) = -8.8 +/- 0.2. The X-ray emission of the other two WR-stars (WR145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا