ترغب بنشر مسار تعليمي؟ اضغط هنا

134 - R. Chornock 2014
We present the discovery and subsequent spectroscopy with Gemini-North of the optical afterglow of the Swift gamma-ray burst (GRB) 140515A. The spectrum exhibits a well-detected continuum at wavelengths longer than 8915 Angs with a steep decrement to zero flux blueward of 8910 Angs due to Ly-alpha absorption at redshift z~6.33. Some transmission through the Lyman-alpha forest is present at 5.2<z<5.733, but none is detected at higher redshift, consistent with previous measurements from quasars and GRB 130606A. We model the red damping wing of Lyman-alpha in three ways that provide equally good fits to the data: (a) a single host galaxy absorber at z=6.327 with log(N_HI)=18.62+/-0.08; (b) pure intergalactic medium (IGM) absorption from z=6.0 to z=6.328 with a constant neutral hydrogen fraction of x_HI=0.056+0.011-0.027; and (c) a hybrid model with a host absorber located within an ionized bubble of radius 10 comoving Mpc in an IGM with x_HI=0.12+/-0.05 (x_HI<0.21 at the 2-sigma level). Regardless of the model, the sharpness of the dropoff in transmission is inconsistent with a substantial neutral fraction in the IGM at this redshift. No narrow absorption lines from the host galaxy are detected, indicating a host metallicity of [Z/H]<~ -0.8. Even if we assume that all of the hydrogen absorption is due to the host galaxy, the column is unusually low for a GRB sightline, similar to two out of the other three highest-redshift bursts with measured log(N_HI). This is possible evidence that the escape fraction of ionizing photons from normal star-forming galaxies increases at z>~6.
We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by GALEX with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early-type galaxy at redshift z=0.4046 that exhibits no evidence for star formation or AGN activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically-selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ~0.002M_sun, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the VLA over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.
[Abridged] We present a search for fast optical transients (~0.5 hr-1 day) using repeated observations of the Pan-STARRS1 Medium-Deep Survey (PS1/MDS) fields. Our search takes advantage of the consecutive g/r-band observations (16.5 min in each filte r), by requiring detections in both bands, with non-detections on preceding and subsequent nights. We identify 19 transients brighter than 22.5 AB mag (S/N>10). Of these, 11 events exhibit quiescent counterparts in the deep PS1/MDS templates that we identify as M4-M9 dwarfs. The remaining 8 transients exhibit a range of properties indicative of main-belt asteroids near the stationary point of their orbits. With identifications for all 19 transients, we place an upper limit of R_FOT(0.5hr)<0.12 deg^-2 d^-1 (95% confidence level) on the sky-projected rate of extragalactic fast transients at <22.5 mag, a factor of 30-50 times lower than previous limits; the limit for a timescale of ~day is R_FOT<2.4e-3 deg^-2 d^-1. To convert these sky-projected rates to volumetric rates, we explore the expected peak luminosities of fast optical transients powered by various mechanisms, and find that non-relativistic events are limited to M~-10 mag (M~-14 mag) for a timescale of ~0.5 hr (~day), while relativistic sources (e.g., GRBs, magnetar-powered transients) can reach much larger luminosities. The resulting volumetric rates are <13 (M~-10 mag), <0.05 (M~-14 mag) and <1e-6 Mpc^-3 yr^-1 (M~-24 mag), significantly above the nova, supernova, and GRB rates, respectively, indicating that much larger surveys are required to provide meaningful constraints. Motivated by the results of our search we discuss strategies for identifying fast optical transients in the LSST main survey, and reach the optimistic conclusion that the veil of foreground contaminants can be lifted with the survey data, without the need for expensive follow-up observations.
We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, thoug h with a steeper rise and lower peak luminosity (M_bol = -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzjs energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M_B ~ -18 mag, diameter < 800 pc), with a low stellar mass (M_* ~ 2.4 * 10^7 M_sun), young stellar population (tau_* ~ 5 Myr), and a star formation rate of ~ 2-3 M_sun/yr. The specific star formation rate is the highest seen in a SLSN host so far (~ 100 Gyr^{-1}). We detect the [O III]lambda 4363 line, and find a low metallicity: 12+(O/H) = 7.8 +/- 0.2 (~ 0.1 Z_sun). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.
We describe observed properties of the Type Iax class of supernovae (SNe Iax), consisting of SNe observationally similar to its prototypical member, SN 2002cx. The class currently has 25 members, and we present optical photometry and/or optical spect roscopy for most of them. SNe Iax are spectroscopically similar to SNe Ia, but have lower maximum-light velocities (2000 < |v| < 8000 km/s), typically lower peak magnitudes (-14.2 > M_V,peak > -18.9 mag), and most have hot photospheres. Relative to SNe Ia, SNe Iax have low luminosities for their light-curve shape. There is a correlation between luminosity and light-curve shape, similar to that of SNe Ia, but offset from that of SNe Ia and with larger scatter. Despite a host-galaxy morphology distribution that is highly skewed to late-type galaxies without any SNe Iax discovered in elliptical galaxies, there are several indications that the progenitor stars are white dwarfs (WDs): evidence of C/O burning in their maximum-light spectra, low ejecta masses, strong Fe lines in their late-time spectra, a lack of X-ray detections, and deep limits on massive stars and star formation at the SN sites. However, two SNe Iax show strong He lines in their spectra. The progenitor system and explosion model that best fits all of the data is a binary system of a C/O WD that accretes matter from a He star and has a significant deflagration. At least some of the time, this explosion will not disrupt the WD. We estimate that in a given volume there are 31^+17_-13 SNe Iax for every 100 SNe Ia, and for every 1 M_sun of iron generated by SNe Ia at z = 0, SNe Iax generate 0.052^+0.017_-0.014 M_sun. Being the largest class of peculiar SNe, thousands of SNe Iax will be discovered by LSST. Future detailed observations of SNe Iax should further our understanding of both their progenitor systems and explosions as well as those of SNe Ia.
We present observations of the unusual optical transient SN 2010U, including spectra taken 1.03 days to 15.3 days after maximum light that identify it as a fast and luminous Fe II type nova. Our multi-band light curve traces the fast decline (t_2 = 3 .5 days) from maximum light (M_V = -10.2 mag), placing SN 2010U in the top 0.5% of the most luminous novae ever observed. We find typical ejecta velocities of approximately 1100 km/s and that SN 2010U shares many spectral and photometric characteristics with two other fast and luminous Fe II type novae, including Nova LMC 1991 and M31N-2007-11d. For the extreme luminosity of this nova, the maximum magnitude vs. rate of decline relationship indicates a massive white dwarf progenitor with a low pre-outburst accretion rate. However, this prediction is in conflict with emerging theories of nova populations, which predict that luminous novae from massive white dwarfs should preferentially exhibit an alternate spectral type (He/N) near maximum light.
We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultra-luminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z=1.566 with a peak brightness of M_UV=-22.3 mag. PS1-11bam is one of the highes t redshift spectroscopically-confirmed SNe known to date. The spectrum is characterized by broad absorption features typical of previous ULSNe (e.g., CII, SiIII), and by strong and narrow MgII and FeII absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [OII]3727 emission line at the same redshift. The equivalent widths of the FeII2600 and MgII2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of tau~15-45 Myr and a stellar mass of M sim (1.1-2.6)x10^9 M_sun (for Z=0.05-1 Z_sun). The star formation rate inferred from the UV continuum and [OII]3727 emission line is ~10 M_sun/yr, higher than in any previous ULSN host. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the interstellar medium in distant galaxies. At the present, the depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z~1-2); the future combination of LSST and 30-m class telescopes promises to extend this technique to z~4.
35 - S. Gezari , R. Chornock , A. Rest 2012
The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining l ight curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report the discovery of a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decline of its light curve follows the predicted mass accretion rate, and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about 2 million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.
We present the discovery of two ultra-luminous supernovae (SNe) at z ~ 0.9 with the Pan-STARRS1 Medium-Deep Survey. These SNe, PS1-10ky and PS1-10awh, are amongst the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap a nd SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_bol ~ -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time-series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10^51 erg. We find photospheric velocities of 12,000-19,000 km/s with no evidence for deceleration measured across ~3 rest-frame weeks around light-curve peak, consistent with the expansion of an optically-thick massive shell of material. We show that, consistent with findings for other ultra-luminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.
We present spectroscopic observations of GRB091127 (z=0.490) at the peak of the putative associated supernova, SN2009nz. Subtracting a late-time spectrum of the host galaxy, we isolate the contribution of SN2009nz and uncover broad features typical o f nearby GRB-SNe. This establishes unambiguously that GRB091127 was accompanied by a broad-lined Type Ic SN, and links a cosmological long burst with a standard energy release (E_gamma,iso ~ 1.1e52 erg) to a massive star progenitor. The spectrum of SN2009nz closely resembles that of SN2006aj, with SN2003dh also providing an acceptable match, but has significantly narrower features than SNe 1998bw and 2010bh, indicative of a lower expansion velocity. The photospheric velocity inferred from the SiII 6355 absorption feature, v_ph ~ 17,000 km/s, is indeed closer to that of SNe 2006aj and 2003dh than to the other GRB-SNe. Combining the measured velocity with the light curve peak brightness and width, we estimate the following explosion parameters: M_Ni ~ 0.35 M_sun, E_K ~ 2.3e51 erg, and M_ej ~ 1.4 M_sun, similar to those of SN2006aj. These properties indicate that SN2009nz follows a trend of lower M_Ni for GRB-SNe with lower E_K and M_ej. Equally important, since GRB091127 is a typical cosmological burst, the similarity of SN2009nz to SN2006aj either casts doubt on the claim that XRF060218/SN2006aj was powered by a neutron star, or indicates that the nature of the central engine is encoded in the SN properties but not in the prompt emission. Future spectra of GRB-SNe at z > 0.3, including proper subtraction of the host galaxy contribution, will shed light on the full dispersion of SN properties for standard long GRBs, on the relation between SNe associated with sub-energetic and standard GRBs, and on a potential dispersion in the associated SN types.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا