ترغب بنشر مسار تعليمي؟ اضغط هنا

The Unusually Luminous Extragalactic Nova SN 2010U

41   0   0.0 ( 0 )
 نشر من قبل Ian Czekala
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of the unusual optical transient SN 2010U, including spectra taken 1.03 days to 15.3 days after maximum light that identify it as a fast and luminous Fe II type nova. Our multi-band light curve traces the fast decline (t_2 = 3.5 days) from maximum light (M_V = -10.2 mag), placing SN 2010U in the top 0.5% of the most luminous novae ever observed. We find typical ejecta velocities of approximately 1100 km/s and that SN 2010U shares many spectral and photometric characteristics with two other fast and luminous Fe II type novae, including Nova LMC 1991 and M31N-2007-11d. For the extreme luminosity of this nova, the maximum magnitude vs. rate of decline relationship indicates a massive white dwarf progenitor with a low pre-outburst accretion rate. However, this prediction is in conflict with emerging theories of nova populations, which predict that luminous novae from massive white dwarfs should preferentially exhibit an alternate spectral type (He/N) near maximum light.

قيم البحث

اقرأ أيضاً

We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = $-$19.95 $pm$ 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Typ e II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H$alpha$ are also unusually high with the blue edge tracing the fastest moving gas initially at 20000 km s$^{-1}$, and then declining approximately linearly to 15000 km s$^{-1}$ over $sim$100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the JEKYLL code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H$alpha$ absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry.
We present optical and near-infrared broadband photometry and optical spectra of AT 2014ej from the the Carnegie Supernova Project-II. These observations are complemented with data from the CHilean Automatic Supernova sEarch, the Public ESO Spectrosc opic Survey of Transient Objects, and from the Backyard Observatory Supernova Search. Observational signatures of AT 2014ej reveal that it is similar to other members of the gap-transient subclass known as luminous red novae (LRNe), including the ubiquitous double hump light curve and spectral properties akin to the LRN SN 2017jfs. A medium-dispersion, visual-wavelength spectrum of AT 2014ej taken the Magellan Clay telescope, exhibits a P Cygni H$alpha$ feature characterized by a blue velocity at zero intensity of $approx 110$ km s$^{-1}$ and a P Cygni minimum velocity of $approx70$ km s$^{-1}$, and which we attribute to emission from a circumstellar wind. Inspection of pre-outbust Hubble Space Telescope images yields no conclusive progenitor detection. In comparison with a sample of LRNe from the literature, AT 2014ej lies among the brighter end of the luminosity distribution. Comparison of the ultra-violet, optical, infrared (UVOIR) light curves of well-observed LRNe to common-envelope evolution models from the literature, indicates the models under predict the luminosity of the comparison sample at all phases and also produce inconsistent time-scales of the secondary peak. Future efforts to model LRNe should expand upon the current parameter space explored and therefore may consider more massive systems and a wider range of dynamical timescales.
HST and ground based observations of the Type IIn SN 2010jl are analyzed, including photometry, spectroscopy in the ultraviolet, optical and NIR bands, 26-1128 days after first detection. At maximum the bolometric luminosity was $sim 3times10^{43}$ e rg/s and even at 850 days exceeds $10^{42}$ erg/s. A NIR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is $> 6.5times10^{50}$ ergs, excluding the dust component. The spectral lines can be separated into one broad component due to electron scattering, and one narrow with expansion velocity $sim 100$ km/s from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after $sim 50$ days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an $r^{-2}$ CSM with a mass loss rate of $sim 0.1$ M_sun/yr. The total mass lost is $> 3$ M_sun. These properties are consistent with the SN expanding into a CSM characteristic of an LBV progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM still opaque to electron scattering.
We present the discovery and the photometric and spectroscopic study of H-rich Type II supernova (SN) KSP-SN-2016kf (SN2017it) observed in the KMTNet Supernova Program in the outskirts of a small irregular galaxy at $zsimeq0.043$ within a day from th e explosion. Our high-cadence, multi-color ($BVI$) light curves of the SN show that it has a very long rise time ($t_text{rise}simeq 20$ days in $V$ band), a moderately luminous peak ($M_Vsimeq -$17.6 mag), a notably luminous and flat plateau ($M_Vsimeq -$17.4 mag and decay slope $ssimeq0.53$ mag per 100 days), and an exceptionally bright radioactive tail. Using the color-dependent bolometric correction to the light curves, we estimate the $^{56}$Ni mass powering the observed radioactive tail to be $0.10pm0.01$ M$_odot$, making it a H-rich Type II SN with one of the largest $^{56}$Ni masses observed to date. The results of our hydrodynamic simulations of the light curves constrain the mass and radius of the progenitor at the explosion to be $sim$15 M$_odot$ (evolved from a star with an initial mass of $sim$ 18.8 M$_odot$) and $sim1040$ R$_odot$, respectively, with the SN explosion energy of $sim 1.3times 10^{51}$ erg s$^{-1}$. The above-average mass of the KSP-SN-2016kf progenitor, together with its low metallicity $ Z/Z_odot simeq0.1-0.4$ obtained from spectroscopic analysis, is indicative of a link between the explosion of high-mass red supergiants and their low-metallicity environment. The early part of the observed light curves shows the presence of excess emission above what is predicted in model calculations, suggesting there is interaction between the ejecta and circumstellar material. We further discuss the implications of the high progenitor initial mass and low-metallicity environment of KSP-SN-2016kf on our understanding of the origin of Type II SNe.
We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transien t Objects (PESSTO). SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for $^{56}$Co decay with full gamma-ray trapping. Initially the spectrum was blue and featureless. Later on, a strong broad ($sim 8000$ km s$^{-1}$) H $alpha$ emission profile became prominent. We apply a Starlight stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of $A_V = 2.9 pm 0.2$ mag and an age of $10_{-2}^{+3}$ Myr for the underlying cluster. We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of $B = -20.46 pm 0.21$ mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C. We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near-infrared excess, possibly due to newly condensed dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا