ترغب بنشر مسار تعليمي؟ اضغط هنا

Image super-resolution is important in many fields, such as surveillance and remote sensing. However, infrared (IR) images normally have low resolution since the optical equipment is relatively expensive. Recently, deep learning methods have dominate d image super-resolution and achieved remarkable performance on visible images; however, IR images have received less attention. IR images have fewer patterns, and hence, it is difficult for deep neural networks (DNNs) to learn diverse features from IR images. In this paper, we present a framework that employs heterogeneous convolution and adversarial training, namely, heterogeneous kernel-based super-resolution Wasserstein GAN (HetSRWGAN), for IR image super-resolution. The HetSRWGAN algorithm is a lightweight GAN architecture that applies a plug-and-play heterogeneous kernel-based residual block. Moreover, a novel loss function that employs image gradients is adopted, which can be applied to an arbitrary model. The proposed HetSRWGAN achieves consistently better performance in both qualitative and quantitative evaluations. According to the experimental results, the whole training process is more stable.
Describing images using natural language is widely known as image captioning, which has made consistent progress due to the development of computer vision and natural language generation techniques. Though conventional captioning models achieve high accuracy based on popular metrics, i.e., BLEU, CIDEr, and SPICE, the ability of captions to distinguish the target image from other similar images is under-explored. To generate distinctive captions, a few pioneers employ contrastive learning or re-weighted the ground-truth captions, which focuses on one single input image. However, the relationships between objects in a similar image group (e.g., items or properties within the same album or fine-grained events) are neglected. In this paper, we improve the distinctiveness of image captions using a Group-based Distinctive Captioning Model (GdisCap), which compares each image with other images in one similar group and highlights the uniqueness of each image. In particular, we propose a group-based memory attention (GMA) module, which stores object features that are unique among the image group (i.e., with low similarity to objects in other images). These unique object features are highlighted when generating captions, resulting in more distinctive captions. Furthermore, the distinctive words in the ground-truth captions are selected to supervise the language decoder and GMA. Finally, we propose a new evaluation metric, distinctive word rate (DisWordRate) to measure the distinctiveness of captions. Quantitative results indicate that the proposed method significantly improves the distinctiveness of several baseline models, and achieves the state-of-the-art performance on both accuracy and distinctiveness. Results of a user study agree with the quantitative evaluation and demonstrate the rationality of the new metric DisWordRate.
In this paper, we develop face.evoLVe -- a comprehensive library that collects and implements a wide range of popular deep learning-based methods for face recognition. First of all, face.evoLVe is composed of key components that cover the full proces s of face analytics, including face alignment, data processing, various backbones, losses, and alternatives with bags of tricks for improving performance. Later, face.evoLVe supports multi-GPU training on top of different deep learning platforms, such as PyTorch and PaddlePaddle, which facilitates researchers to work on both large-scale datasets with millions of images and low-shot counterparts with limited well-annotated data. More importantly, along with face.evoLVe, images before & after alignment in the common benchmark datasets are released with source codes and trained models provided. All these efforts lower the technical burdens in reproducing the existing methods for comparison, while users of our library could focus on developing advanced approaches more efficiently. Last but not least, face.evoLVe is well designed and vibrantly evolving, so that new face recognition approaches can be easily plugged into our framework. Note that we have used face.evoLVe to participate in a number of face recognition competitions and secured the first place. The version that supports PyTorch is publicly available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch and the PaddlePaddle version is available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch/tree/master/paddle. Face.evoLVe has been widely used for face analytics, receiving 2.4K stars and 622 forks.
A wide range of image captioning models has been developed, achieving significant improvement based on popular metrics, such as BLEU, CIDEr, and SPICE. However, although the generated captions can accurately describe the image, they are generic for s imilar images and lack distinctiveness, i.e., cannot properly describe the uniqueness of each image. In this paper, we aim to improve the distinctiveness of image captions through training with sets of similar images. First, we propose a distinctiveness metric -- between-set CIDEr (CIDErBtw) to evaluate the distinctiveness of a caption with respect to those of similar images. Our metric shows that the human annotations of each image are not equivalent based on distinctiveness. Thus we propose several new training strategies to encourage the distinctiveness of the generated caption for each image, which are based on using CIDErBtw in a weighted loss function or as a reinforcement learning reward. Finally, extensive experiments are conducted, showing that our proposed approach significantly improves both distinctiveness (as measured by CIDErBtw and retrieval metrics) and accuracy (e.g., as measured by CIDEr) for a wide variety of image captioning baselines. These results are further confirmed through a user study.
Visual crowd counting has been recently studied as a way to enable people counting in crowd scenes from images. Albeit successful, vision-based crowd counting approaches could fail to capture informative features in extreme conditions, e.g., imaging at night and occlusion. In this work, we introduce a novel task of audiovisual crowd counting, in which visual and auditory information are integrated for counting purposes. We collect a large-scale benchmark, named auDiovISual Crowd cOunting (DISCO) dataset, consisting of 1,935 images and the corresponding audio clips, and 170,270 annotated instances. In order to fuse the two modalities, we make use of a linear feature-wise fusion module that carries out an affine transformation on visual and auditory features. Finally, we conduct extensive experiments using the proposed dataset and approach. Experimental results show that introducing auditory information can benefit crowd counting under different illumination, noise, and occlusion conditions. The dataset and code will be released. Code and data have been made available
Although significant progress has been made in the field of automatic image captioning, it is still a challenging task. Previous works normally pay much attention to improving the quality of the generated captions but ignore the diversity of captions . In this paper, we combine determinantal point process (DPP) and reinforcement learning (RL) and propose a novel reinforcing DPP (R-DPP) approach to generate a set of captions with high quality and diversity for an image. We show that R-DPP performs better on accuracy and diversity than using noise as a control signal (GANs, VAEs). Moreover, R-DPP is able to preserve the modes of the learned distribution. Hence, beam search algorithm can be applied to generate a single accurate caption, which performs better than other RL-based models.
Recently, the state-of-the-art models for image captioning have overtaken human performance based on the most popular metrics, such as BLEU, METEOR, ROUGE, and CIDEr. Does this mean we have solved the task of image captioning? The above metrics only measure the similarity of the generated caption to the human annotations, which reflects its accuracy. However, an image contains many concepts and multiple levels of detail, and thus there is a variety of captions that express different concepts and details that might be interesting for different humans. Therefore only evaluating accuracy is not sufficient for measuring the performance of captioning models --- the diversity of the generated captions should also be considered. In this paper, we proposed a new metric for measuring the diversity of image captions, which is derived from latent semantic analysis and kernelized to use CIDEr similarity. We conduct extensive experiments to re-evaluate recent captioning models in the context of both diversity and accuracy. We find that there is still a large gap between the model and human performance in terms of both accuracy and diversity and the models that have optimized accuracy (CIDEr) have low diversity. We also show that balancing the cross-entropy loss and CIDEr reward in reinforcement learning during training can effectively control the tradeoff between diversity and accuracy of the generated captions.
Attention modules connecting encoder and decoders have been widely applied in the field of object recognition, image captioning, visual question answering and neural machine translation, and significantly improves the performance. In this paper, we p ropose a bottom-up gated hierarchical attention (GHA) mechanism for image captioning. Our proposed model employs a CNN as the decoder which is able to learn different concepts at different layers, and apparently, different concepts correspond to different areas of an image. Therefore, we develop the GHA in which low-level concepts are merged into high-level concepts and simultaneously low-level attended features pass to the top to make predictions. Our GHA significantly improves the performance of the model that only applies one level attention, for example, the CIDEr score increases from 0.923 to 0.999, which is comparable to the state-of-the-art models that employ attributes boosting and reinforcement learning (RL). We also conduct extensive experiments to analyze the CNN decoder and our proposed GHA, and we find that deeper decoders cannot obtain better performance, and when the convolutional decoder becomes deeper the model is likely to collapse during training.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا