ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Image Super-Resolution via Heterogeneous Convolutional WGAN

133   0   0.0 ( 0 )
 نشر من قبل Yongsong Huang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Image super-resolution is important in many fields, such as surveillance and remote sensing. However, infrared (IR) images normally have low resolution since the optical equipment is relatively expensive. Recently, deep learning methods have dominated image super-resolution and achieved remarkable performance on visible images; however, IR images have received less attention. IR images have fewer patterns, and hence, it is difficult for deep neural networks (DNNs) to learn diverse features from IR images. In this paper, we present a framework that employs heterogeneous convolution and adversarial training, namely, heterogeneous kernel-based super-resolution Wasserstein GAN (HetSRWGAN), for IR image super-resolution. The HetSRWGAN algorithm is a lightweight GAN architecture that applies a plug-and-play heterogeneous kernel-based residual block. Moreover, a novel loss function that employs image gradients is adopted, which can be applied to an arbitrary model. The proposed HetSRWGAN achieves consistently better performance in both qualitative and quantitative evaluations. According to the experimental results, the whole training process is more stable.

قيم البحث

اقرأ أيضاً

We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3 adapts denoising diffusion probabilistic models to conditional image generation and performs super-resolution through a stochastic denoising process. Inference starts with pure Gaussian noise and iteratively refines the noisy output using a U-Net model trained on denoising at various noise levels. SR3 exhibits strong performance on super-resolution tasks at different magnification factors, on faces and natural images. We conduct human evaluation on a standard 8X face super-resolution task on CelebA-HQ, comparing with SOTA GAN methods. SR3 achieves a fool rate close to 50%, suggesting photo-realistic outputs, while GANs do not exceed a fool rate of 34%. We further show the effectiveness of SR3 in cascaded image generation, where generative models are chained with super-resolution models, yielding a competitive FID score of 11.3 on ImageNet.
With the effective application of deep learning in computer vision, breakthroughs have been made in the research of super-resolution images reconstruction. However, many researches have pointed out that the insufficiency of the neural network extract ion on image features may bring the deteriorating of newly reconstructed image. On the other hand, the generated pictures are sometimes too artificial because of over-smoothing. In order to solve the above problems, we propose a novel self-calibrated convolutional generative adversarial networks. The generator consists of feature extraction and image reconstruction. Feature extraction uses self-calibrated convolutions, which contains four portions, and each portion has specific functions. It can not only expand the range of receptive fields, but also obtain long-range spatial and inter-channel dependencies. Then image reconstruction is performed, and finally a super-resolution image is reconstructed. We have conducted thorough experiments on different datasets including set5, set14 and BSD100 under the SSIM evaluation method. The experimental results prove the effectiveness of the proposed network.
Hyperspectral images are of crucial importance in order to better understand features of different materials. To reach this goal, they leverage on a high number of spectral bands. However, this interesting characteristic is often paid by a reduced sp atial resolution compared with traditional multispectral image systems. In order to alleviate this issue, in this work, we propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution hyperspectral image (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to an architecture from two folds: one is to utilize the HR-HSI at a different scale to get an output with a satisfied spectral preservation; another one is to apply concepts of multi-resolution analysis to extract high-frequency information, aiming to output high quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves best performance (both qualitatively and quantitatively) compared with recent state-of-the-art hyperspectral image super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as, a better network generalization ability, a limited computational burden, and a robustness with respect to the number of training samples.
We introduce a simple and efficient lossless image compression algorithm. We store a low resolution version of an image as raw pixels, followed by several iterations of lossless super-resolution. For lossless super-resolution, we predict the probabil ity of a high-resolution image, conditioned on the low-resolution input, and use entropy coding to compress this super-resolution operator. Super-Resolution based Compression (SReC) is able to achieve state-of-the-art compression rates with practical runtimes on large datasets. Code is available online at https://github.com/caoscott/SReC.
Deep Convolutional Neural Networks (DCNNs) have achieved impressive performance in Single Image Super-Resolution (SISR). To further improve the performance, existing CNN-based methods generally focus on designing deeper architecture of the network. H owever, we argue blindly increasing networks depth is not the most sensible way. In this paper, we propose a novel end-to-end Residual Neuron Attention Networks (RNAN) for more efficient and effective SISR. Structurally, our RNAN is a sequential integration of the well-designed Global Context-enhanced Residual Groups (GCRGs), which extracts super-resolved features from coarse to fine. Our GCRG is designed with two novelties. Firstly, the Residual Neuron Attention (RNA) mechanism is proposed in each block of GCRG to reveal the relevance of neurons for better feature representation. Furthermore, the Global Context (GC) block is embedded into RNAN at the end of each GCRG for effectively modeling the global contextual information. Experiments results demonstrate that our RNAN achieves the comparable results with state-of-the-art methods in terms of both quantitative metrics and visual quality, however, with simplified network architecture.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا