ترغب بنشر مسار تعليمي؟ اضغط هنا

Face.evoLVe: A High-Performance Face Recognition Library

101   0   0.0 ( 0 )
 نشر من قبل Qingzhong Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop face.evoLVe -- a comprehensive library that collects and implements a wide range of popular deep learning-based methods for face recognition. First of all, face.evoLVe is composed of key components that cover the full process of face analytics, including face alignment, data processing, various backbones, losses, and alternatives with bags of tricks for improving performance. Later, face.evoLVe supports multi-GPU training on top of different deep learning platforms, such as PyTorch and PaddlePaddle, which facilitates researchers to work on both large-scale datasets with millions of images and low-shot counterparts with limited well-annotated data. More importantly, along with face.evoLVe, images before & after alignment in the common benchmark datasets are released with source codes and trained models provided. All these efforts lower the technical burdens in reproducing the existing methods for comparison, while users of our library could focus on developing advanced approaches more efficiently. Last but not least, face.evoLVe is well designed and vibrantly evolving, so that new face recognition approaches can be easily plugged into our framework. Note that we have used face.evoLVe to participate in a number of face recognition competitions and secured the first place. The version that supports PyTorch is publicly available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch and the PaddlePaddle version is available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch/tree/master/paddle. Face.evoLVe has been widely used for face analytics, receiving 2.4K stars and 622 forks.



قيم البحث

اقرأ أيضاً

85 - Yi Wei , Zhe Gan , Wenbo Li 2020
We present Mask-guided Generative Adversarial Network (MagGAN) for high-resolution face attribute editing, in which semantic facial masks from a pre-trained face parser are used to guide the fine-grained image editing process. With the introduction o f a mask-guided reconstruction loss, MagGAN learns to only edit the facial parts that are relevant to the desired attribute changes, while preserving the attribute-irrelevant regions (e.g., hat, scarf for modification `To Bald). Further, a novel mask-guided conditioning strategy is introduced to incorporate the influence region of each attribute change into the generator. In addition, a multi-level patch-wise discriminator structure is proposed to scale our model for high-resolution ($1024 times 1024$) face editing. Experiments on the CelebA benchmark show that the proposed method significantly outperforms prior state-of-the-art approaches in terms of both image quality and editing performance.
Face occlusions, covering either the majority or discriminative parts of the face, can break facial perception and produce a drastic loss of information. Biometric systems such as recent deep face recognition models are not immune to obstructions or other objects covering parts of the face. While most of the current face recognition methods are not optimized to handle occlusions, there have been a few attempts to improve robustness directly in the training stage. Unlike those, we propose to study the effect of generative face completion on the recognition. We offer a face completion encoder-decoder, based on a convolutional operator with a gating mechanism, trained with an ample set of face occlusions. To systematically evaluate the impact of realistic occlusions on recognition, we propose to play the occlusion game: we render 3D objects onto different face parts, providing precious knowledge of what the impact is of effectively removing those occlusions. Extensive experiments on the Labeled Faces in the Wild (LFW), and its more difficult variant LFW-BLUFR, testify that face completion is able to partially restore face perception in machine vision systems for improved recognition.
81 - Jing Xu , Tszhang Guo , Yong Xu 2021
Deep Convolutional Neural Networks (DCNNs) and their variants have been widely used in large scale face recognition(FR) recently. Existing methods have achieved good performance on many FR benchmarks. However, most of them suffer from two major probl ems. First, these methods converge quite slowly since they optimize the loss functions in a high-dimensional and sparse Gaussian Sphere. Second, the high dimensionality of features, despite the powerful descriptive ability, brings difficulty to the optimization, which may lead to a sub-optimal local optimum. To address these problems, we propose a simple yet efficient training mechanism called MultiFace, where we approximate the original high-dimensional features by the ensemble of low-dimensional features. The proposed mechanism is also generic and can be easily applied to many advanced FR models. Moreover, it brings the benefits of good interpretability to FR models via the clustering effect. In detail, the ensemble of these low-dimensional features can capture complementary yet discriminative information, which can increase the intra-class compactness and inter-class separability. Experimental results show that the proposed mechanism can accelerate 2-3 times with the softmax loss and 1.2-1.5 times with Arcface or Cosface, while achieving state-of-the-art performances in several benchmark datasets. Especially, the significant improvements on large-scale datasets(e.g., IJB and MageFace) demonstrate the flexibility of our new training mechanism.
We survey over 100 face datasets constructed between 1976 to 2019 of 145 million images of over 17 million subjects from a range of sources, demographics and conditions. Our historical survey reveals that these datasets are contextually informed, sha ped by changes in political motivations, technological capability and current norms. We discuss how such influences mask specific practices (some of which may actually be harmful or otherwise problematic) and make a case for the explicit communication of such details in order to establish a more grounded understanding of the technologys function in the real world.
A standard pipeline of current face recognition frameworks consists of four individual steps: locating a face with a rough bounding box and several fiducial landmarks, aligning the face image using a pre-defined template, extracting representations a nd comparing. Among them, face detection, landmark detection and representation learning have long been studied and a lot of works have been proposed. As an essential step with a significant impact on recognition performance, the alignment step has attracted little attention. In this paper, we first explore and highlight the effects of different alignment templates on face recognition. Then, for the first time, we try to search for the optimal template automatically. We construct a well-defined searching space by decomposing the template searching into the crop size and vertical shift, and propose an efficient method Face Alignment Policy Search (FAPS). Besides, a well-designed benchmark is proposed to evaluate the searched policy. Experiments on our proposed benchmark validate the effectiveness of our method to improve face recognition performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا