ﻻ يوجد ملخص باللغة العربية
In this paper, we develop face.evoLVe -- a comprehensive library that collects and implements a wide range of popular deep learning-based methods for face recognition. First of all, face.evoLVe is composed of key components that cover the full process of face analytics, including face alignment, data processing, various backbones, losses, and alternatives with bags of tricks for improving performance. Later, face.evoLVe supports multi-GPU training on top of different deep learning platforms, such as PyTorch and PaddlePaddle, which facilitates researchers to work on both large-scale datasets with millions of images and low-shot counterparts with limited well-annotated data. More importantly, along with face.evoLVe, images before & after alignment in the common benchmark datasets are released with source codes and trained models provided. All these efforts lower the technical burdens in reproducing the existing methods for comparison, while users of our library could focus on developing advanced approaches more efficiently. Last but not least, face.evoLVe is well designed and vibrantly evolving, so that new face recognition approaches can be easily plugged into our framework. Note that we have used face.evoLVe to participate in a number of face recognition competitions and secured the first place. The version that supports PyTorch is publicly available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch and the PaddlePaddle version is available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch/tree/master/paddle. Face.evoLVe has been widely used for face analytics, receiving 2.4K stars and 622 forks.
We present Mask-guided Generative Adversarial Network (MagGAN) for high-resolution face attribute editing, in which semantic facial masks from a pre-trained face parser are used to guide the fine-grained image editing process. With the introduction o
Face occlusions, covering either the majority or discriminative parts of the face, can break facial perception and produce a drastic loss of information. Biometric systems such as recent deep face recognition models are not immune to obstructions or
Deep Convolutional Neural Networks (DCNNs) and their variants have been widely used in large scale face recognition(FR) recently. Existing methods have achieved good performance on many FR benchmarks. However, most of them suffer from two major probl
We survey over 100 face datasets constructed between 1976 to 2019 of 145 million images of over 17 million subjects from a range of sources, demographics and conditions. Our historical survey reveals that these datasets are contextually informed, sha
A standard pipeline of current face recognition frameworks consists of four individual steps: locating a face with a rough bounding box and several fiducial landmarks, aligning the face image using a pre-defined template, extracting representations a