ترغب بنشر مسار تعليمي؟ اضغط هنا

We systematically investigated the geometric, electronic and thermoelectric (TE) properties of bulk black phosphorus (BP) under strain. The hinge-like structure of BP brings unusual mechanical responses such as anisotropic Youngs modulus and negative Poissons ratio. A sensitive electronic structure of BP makes it transform among metal, direct and indirect semiconductors under strain. The maximal figure of merit $ZT$ of BP is found to be 0.72 at $800,mathrm{K}$ that could be enhanced to 0.87 by exerting an appropriate strain, revealing BP could be a potential medium-high temperature TE material. Such strain-induced enhancements of TE performance are often observed to occur at the boundary of the direct-indirect band gap transition, which can be attributed to the increase of degeneracy of energy valleys at the transition point. By comparing the structure of BP with SnSe, a family of potential TE materials with hinge-like structure are suggested. This study not only exposes various novel properties of BP under strain, but also proposes effective strategies to seek for better TE materials.
Superstructures of cubic and hexagonal diamonds (h- and c-diamond) comprising a family of stable diamond-like $sp^3$ hybridized novel carbon allotropes are proposed, which are referred to as U$_n$-carbon where $n geq 2$ denotes the number of structur al layers in a unit cell. The conventional h- and c-diamond are included in this family as members with $n=2$ and 3, respectively. U$_n$-carbon ($n=4-6$), which are unveiled energetically and thermodynamically more stable than h-diamond and possess remarkable kinetic stabilities, are shown to be insulators with indirect gaps of $5.6 sim 5.8$ eV, densities of $ 3.5 sim 3.6$ g/cm$^3$, bulk modulus of $4.3 sim 4.4 times 10^{2}$ GPa, and Vickers hardness of $92.9 sim 97.5$ GPa even harder than h- and c-diamond. The simulated x-ray diffraction and Raman spectra are presented for experimental characterization. These new structures of carbon would have a compelling impact in physics, chemistry, materials science and geophysics.
By means of the first-principles calculations combined with the tight-binding approximation, the strain-induced semiconductor-semimetal transition in graphdiyne is discovered. It is shown that the band gap of graphdiyne increases from 0.47 eV to 1.39 eV with increasing the biaxial tensile strain, while the band gap decreases from 0.47 eV to nearly zero with increasing the uniaxial tensile strain, and Dirac cone-like electronic structures are observed. The uniaxial strain-induced changes of the electronic structures of graphdiyne come from the breaking of geometrical symmetry that lifts the degeneracy of energy bands. The properties of graphdiyne under strains are disclosed different remarkably from that of graphene.
A set of general constructing schemes is unveiled to predict a large family of stable boron monoelemental, hollow fullerenes with magic numbers 32+8k (k>=0). The remarkable stabilities of these new boron fullerenes are then studied by intense ab init io calculations. An electron counting rule as well as an isolated hollow rule are proposed to readily show the high stability and the electronic bonding property, which are also revealed applicable to a number of newly predicted boron sheets and nanotubes.
By means of first-principles density functional theory calculations, we find that hydrogen-passivated ultrathin silicon nanowires (SiNWs) along [100] direction with symmetrical multiple surface dangling bonds (SDBs) and boron doping can have a half-m etallic ground state with 100% spin polarization, where the half-metallicity is shown quite robust against external electric fields. Under the circumstances with various SDBs, the H-passivated SiNWs can also be ferromagnetic or antiferromagnetic semiconductors. The present study not only offers a possible route to engineer half-metallic SiNWs without containing magnetic atoms but also sheds light on manipulating spin-dependent properties of nanowires through surface passivation.
106 - Qing-Bo Yan , Qing-Rong Zheng , 2008
By means of ab initio calculations within the density functional theory, we have found that B80 fullerenes can condense to form stable face-centered-cubic fcc solids. It is shown that when forming a crystal, B80 cages are geometrically distorted, the Ih symmetry is lowered to Th, and four boron-boron chemical bonds are formed between every two nearest neighbor B80 cages. The cohesive energy of B80 fcc solid is 0.23 eV/atom with respect to the isolated B80 fullerene. The calculated electronic structure reveals that the fcc B80 solid is a metal. The predicted solid phase would constitute a form of pure boron and might have diverse implications. In addition, a simple electron counting rule is proposed, which could explain the stability of B80 fullerene and the recently predicted stable boron sheet.
349 - Qing-Bo Yan , Qing-Rong Zheng , 2008
A systematic first-principles study within density functional theory on the geometrical structures and electronic properties of unconventional fullerene C64 and its derivatives C64X4 (X = H; F;Cl;Br) has been performed. By searching through all 3465 isomers of C64, the ground state of C64 is found to be spherical shape with D2 symmetry, which differs from the parent cage of the recently synthesized C64H4 that is pear-shaped with C3v symmetry. We found that the addition of the halogen atoms like F;Cl;Br to the pentagon-pentagon fusion vertex of C64 cage could enhance the stability, forming the unconventional fullerenes C64X4. The Mulliken charge populations, LUMO-HOMO gap energies and density of states are calculated, showing that different halogen atoms added to C64 will cause remarkably different charge populations of the C64X4 molecule; the chemical deriving could enlarge the energy gaps and affect the electronic structures distinctly. It is unveiled that C64F4 is even more stable than C64H4, as the C-X bond energy of the former is higher than that of the latter. The computed spectra of C64H4 molecules agree well with the experimental data; the IR, Raman, NMR spectra of C64X4 (X = F;Cl;Br) are also calculated to stimulate further experimental investigations. Finally, it is uncovered by total energy calculations that C64X4 could form a stable hexagonal monolayer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا