ترغب بنشر مسار تعليمي؟ اضغط هنا

We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock past a curved wedge for the steady full Euler equations in an important physical regime, which form a nonlinear system of mixed-composite hyperbo lic-elliptic type. To achieve this, we first employ the coordinate transformation of Euler-Lagrange type and then exploit one of the new equations to identify a potential function in Lagrangian coordinates. By capturing the conservation properties of the Euler system, we derive a single second-order nonlinear elliptic equation for the potential function in the subsonic region so that the transonic shock problem is reformulated as a one-phase free boundary problem for a second-order nonlinear elliptic equation with the shock-front as a free boundary. One of the advantages of this approach is that, given the shock location or quivalently the entropy function along the shock-front downstream, all the physical variables can expressed as functions of the gradient of the potential function, and the downstream asymptotic behavior of the potential function at the infinite exit can be uniquely determined with uniform decay rate. To solve the free boundary problem, we employ the hodograph transformation to transfer the free boundary to a fixed boundary, while keeping the ellipticity of the second-order equations, and then update the entropy function to prove that it has a fixed point. Another advantage in our analysis here is in the context of the real full Euler equations so that the solutions do not necessarily obey Bernoullis law with a uniform Bernoulli constant, that is, the Bernoulli constant is allowed to change for different fluid trajectories.
We give a new proof for the local existence of a smooth isometric embedding of a smooth $3$-dimensional Riemannian manifold with nonzero Riemannian curvature tensor into $6$-dimensional Euclidean space. Our proof avoids the sophisticated arguments vi a microlocal analysis used in earlier proofs. In Part 1, we introduce a new type of system of partial differential equations, which is not one of the standard types (elliptic, hyperbolic, parabolic) but satisfies a property called strong symmetric positivity. Such a PDE system is a generalization of and has properties similar to a system of ordinary differential equations with a regular singular point. A local existence theorem is then established by using a novel local-to-global-to-local approach. In Part 2, we apply this theorem to prove the local existence result for isometric embeddings.
In the past decade, nanopores have been developed extensively for various potential applications, and their performance greatly depends on the surface properties of the nanopores. Atomic layer deposition (ALD) is a new technology for depositing thin films, which has been rapidly developed from a niche technology to an established method. ALD films can cover the surface in confined regions even in nano scale conformally, thus it is proved to be a powerful tool to modify the surface of the synthetic nanopores and also to fabricate complex nanopores. This review gives a brief introduction on nanopore synthesis and ALD fundamental knowledge, then focuses on the various aspects of synthetic nanopores processing by ALD and their applications, including single-molecule sensing, nanofluidic devices, nanostructure fabrication and other applications.
We investigate the high temperature phase of layered manganites, and demonstrate that the charge-orbital phase transition without magnetic order in La$_{0.5}$Sr$_{1.5}$MnO$_4$ can be understood in terms of the density wave instability. The orbital or dering is found to be induced by the nesting between segments of Fermi surface with different orbital characters. The simultaneous charge and orbital orderings are elaborated with a mean field theory. The ordered orbitals are shown to be $d_{x^2-y^2} pm d_{3z^2-r^2}$.
We report theoretical and experimental studies of the effect of Zn-impurity in Fe-based superconductors. Zn-impurity is expected to severely suppress sign reversed s$_pm$ wave pairing. The experimentally observed suppression of T$_c$ under Zn-doping strongly depends on the materials and the charge carrier contents, which suggests competition of $s_{++}$ and $s_{pm}$ pairings in Fe-base superconductors. We study a model incorporating both $s_{++}$ and $s_{pm}$ pairing couplings by using Bogoliubov de-Gennes equation, and show that the Zn-impurity strongly suppresses $s_{pm}$ pairing and may induce a transition from $s_{pm}$ to $s_{++}$-wave. Our theory is consistent with various experiments on the impurity effect. We present new experimental data on the Zn-doping SmFe$_{1-x}$Zn$_x$AsO$_{0.9}$F$_{0.1}$ of T$_c=$ 50K, in further support of our proposal.
Recent discovery of superconducting (SC) ternary iron selenides has block antiferromagentic (AFM) long range order. Many experiments show possible mesoscopic phase separation of the superconductivity and antiferromagnetism, while the neutron experime nt reveals a sizable suppression of magnetic moment due to the superconductivity indicating a possible phase coexistence. Here we propose that the observed suppression of the magnetic moment may be explained due to the proximity effect within a phase separation scenario. We use a two-orbital model to study the proximity effect on a layer of block AFM state induced by neighboring SC layers via an interlayer tunneling mechanism. We argue that the proximity effect in ternary Fe-selenides should be large because of the large interlayer coupling and weak electron correlation. The result of our mean field theory is compared with the neutron experiments semi-quantitatively. The suppression of the magnetic moment due to the SC proximity effect is found to be more pronounced in the d-wave superconductivity and may be enhanced by the frustrated structure of the block AFM state.
Recent transport properties on the stripe phase in La$_{text{1.875}}$Ba$_{text{01.25}}$CuO$_{text{4}}$ by Li textit{et al.} found 2-dimensional superconductivity over a wide temperature range including a Berezinski-Kosterlitz-Thouless transition at a temperature T=16K, with 3-dimensional superconducting (SC) ordering only at T=4K. These results contradict the long standing belief that the onset of superconductivity is suppressed by stripe ordering and suggest coexistence of stripe and SC phases. The lack of 3-D superconducting order above T=4K requires an antiphase ordering in the SC state to suppress the interlayer Josephson coupling as proposed by Berg textit{et al.}. Here we use a renormalized mean field theory for a generalized t-J model to examine in detail the energetics of the spin and charge stripe ordered SC states including possible antiphase domains in the SC order. We find that the energies of these modulated states are very close to each other and that the anisotropy present in the low temperature tetragonal crystal structure favors stripe resonating valence bond states. The stripe antiphase SC states are found to have energies very close,but always above, the ground state energy which suggests additional physical effects are responsible for their stability.
Superconductivity in iron pnictides is studied by using a two-orbital Hubbard model in the large U limit. The Coulomb repulsion induces an orbital-dependent pairing between charge carriers. The pairing is found mainly from the scattering within the s ame Fermi pocket. The inter-pocket pair scatterings determine the symmetry of the superconductivity, which is extended s-wave at small Hunds coupling, and d-wave at large Hunds coupling and large U. The former is consistent with recent experiments of ARPES and Andreev reflection spectroscope.
Magnetic field induced antiferromagnetic phase of the underdoped cuprates is studied within the t-t-J model. A magnetic field suppresses the pairing amplitude, which in turn may induce antiferromagnetism. We apply our theory to interpret the recently reported quantum oscillations in high magnetic field in ortho-II YBa2Cu3O6.5 and propose that the total hole density abstracted from the oscillation period is reduced by 50% due to the antiferromagnetism.
312 - Gui-Qiang Chen 2007
For an upstream supersonic flow past a straight-sided cone in $R^3$ whose vertex angle is less than the critical angle, a transonic (supersonic-subsonic) shock-front attached to the cone vertex can be formed in the flow. In this paper we analyze the stability of transonic shock-fronts in three-dimensional steady potential flow past a perturbed cone. We establish that the self-similar transonic shock-front solution is conditionally stable in structure with respect to the conical perturbation of the cone boundary and the upstream flow in appropriate function spaces. In particular, it is proved that the slope of the shock-front tends asymptotically to the slope of the unperturbed self-similar shock-front downstream at infinity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا