ﻻ يوجد ملخص باللغة العربية
We give a new proof for the local existence of a smooth isometric embedding of a smooth $3$-dimensional Riemannian manifold with nonzero Riemannian curvature tensor into $6$-dimensional Euclidean space. Our proof avoids the sophisticated arguments via microlocal analysis used in earlier proofs. In Part 1, we introduce a new type of system of partial differential equations, which is not one of the standard types (elliptic, hyperbolic, parabolic) but satisfies a property called strong symmetric positivity. Such a PDE system is a generalization of and has properties similar to a system of ordinary differential equations with a regular singular point. A local existence theorem is then established by using a novel local-to-global-to-local approach. In Part 2, we apply this theorem to prove the local existence result for isometric embeddings.
We prove a rigidity theorem that shows that, under many circumstances, quasi-isometric embeddings of equal rank, higher rank symmetric spaces are close to isometric embeddings. We also produce some surprising examples of quasi-isometric embeddings of
We obtain a dynamical--topological obstruction for the existence of isometric embedding of a Riemannian manifold-with-boundary $(M,g)$: if the first real homology of $M$ is nontrivial, if the centre of the fundamental group is trivial, and if $M$ is
We revisit the classical problem due to Weyl, as well as its generalisations, concerning the isometric immersions of $mathbb{S}^2$ into simply-connected $3$-dimensional Riemannian manifolds with non-negative Gauss curvature. A sufficient condition is
We prove that a closed $n$-manifold $M$ with positive scalar curvature and abelian fundamental group admits a finite covering $M$ which is strongly inessential. The latter means that a classifying map $u:Mto K(pi_1(M),1)$ can be deformed to the $(n-2
We show existence of solutions to the Poisson equation on Riemannian manifolds with positive essential spectrum, assuming a sharp pointwise decay on the source function. In particular we can allow the Ricci curvature to be unbounded from below. In co