ترغب بنشر مسار تعليمي؟ اضغط هنا

Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed due to dosage compensation. Here, we dissect the molecular mechanisms and functional pressure s driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.
Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly an d continuously, from the top and bottom plates. We further found that the oscillation of the temperature field does not originate from the boundary layers, but rather is a result of the horizontal motion of the hot ascending and cold descending fluids being modulated by the twisting and sloshing motion of the bulk flow field.
We report an experimental study of the large-scale circulation (LSC) in a turbulent Rayleigh-B{e}nard convection cell with aspect ratio unity. The temperature-extremum-extraction (TEE) method for obtaining the dynamic information of the LSC is presen ted. With this method, the azimuthal angular positions of the hot ascending and cold descending flows along the sidewall are identified from the measured instantaneous azimuthal temperature profile. The motion of the LSC is then decomposed into two different modes: the azimuthal mode and the translational or off-center mode. Comparing to the previous sinusoidal-fitting (SF) method, it is found that both methods give the same information about the azimuthal motion of the LSC, but the TEE method in addition can provide information about the off-center motion of the LSC, which is found to oscillate time-periodically around the cells central vertical axis with an amplitude being nearly independent of the turbulent intensity. It is further found that the azimuthal angular positions of the hot ascending flow near the bottom plate and the cold descending flow near the top plate oscillate periodically out of phase by $pi$, leading to the torsional mode of the LSC. These oscillations are then propagated vertically along the sidewall by the hot ascending and cold descending fluids. When they reach the mid-height plane, the azimuthal positions of the hottest and coldest fluids again oscillate out of phase by $pi$. It is this out-of-phase horizontal positional oscillation of the hottest and coldest fluids at the same horizontal plane that produces the off-center oscillation of the LSC. A direct velocity measurement further confirms the existence of the bulk off-center mode of the flow field near cell center.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا