ﻻ يوجد ملخص باللغة العربية
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly and continuously, from the top and bottom plates. We further found that the oscillation of the temperature field does not originate from the boundary layers, but rather is a result of the horizontal motion of the hot ascending and cold descending fluids being modulated by the twisting and sloshing motion of the bulk flow field.
We report the statistical properties of temperature and thermal energy dissipation rate in low-Prandtl number turbulent Rayleigh-Benard convection. High resolution two-dimensional direct numerical simulations were carried out for the Rayleigh number
We report an experimental study aiming to clarify the role of boundary conditions (BC) in high Rayleigh number $10^8 < {rm{Ra}} < 3 times 10^{12}$ turbulent thermal convection of cryogenic helium gas. We switch between BC closer to constant heat flux
We analyze the transport and deposition behavior of dilute microparticles in turbulent Rayleigh-Benard convection. Two-dimensional direct numerical simulations were carried out for the Rayleigh number ($Ra$) of $10^{8}$ and the Prandtl number ($Pr$)
Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr appr
We present a systematic investigation of the effects of roughness geometry on turbulent Rayleigh-Benard convection (RBC) over rough plates with pyramid-shaped and periodically distributed roughness elements. Using a parameter $lambda$ defined as the