ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first results of our search for new, extended Planetary Nebulae (PNe) based on careful, systematic, visual scrutiny of the imaging data from the INT Photometric H-alpha Survey of the Northern Galactic Plane (IPHAS). The newly uncovered PNe will help to improve the census of this important population of Galactic objects that serve as key windows into the late stage evolution of low to intermediate mass stars. They will also facilitate study of the faint end of the ensemble Galactic PN luminosity function. The sensitivity and coverage of IPHAS allows PNe to be found in regions of greater extinction in the Galactic Plane and/or those PNe in a more advanced evolutionary state and at larger distances compared to the general Galactic PN population. Using a set of newly revised optical diagnostic diagrams in combination with access to a powerful, new, multi-wavelength imaging database, we have identified 159 true, likely and possible PNe for this first catalogue release. The ability of IPHAS to unveil PNe at low Galactic latitudes and towards the Galactic Anticenter, compared to previous surveys, makes this survey an ideal tool to contribute to the improvement of our knowledge of the whole Galactic PN population
As part of a systematic search programme of a 10-degree wide strip of the Northern Galactic plane we present preliminary evidence for the discovery of four (and possibly five) new supernova remnants (SNRs). The pilot search area covered the 19-20 hou r right ascension zone sampling from +20 to +55 degrees in declination using binned mosaic images from the INT Photometric H-alpha Survey (IPHAS). The optical identification of the candidate SNRs was based mainly on their filamentary and arc-like emission morphologies, their apparently coherent, even if fractured structure and clear disconnection from any diffuse neighbouring HII region type nebulosity. Follow-up optical spectroscopy was undertaken, sampling carefully across prominent features of these faint sources. The resulting spectra revealed typical emission line ratios for shock excited nebulae which are characteristic of SNRs, which, along with the latest diagnostic diagrams, strongly support the likely SNR nature of these sources: G038.7-1.3 (IPHASX J190640.5+042819); G067.6+0.9 (IPHASX J195744.9+305306); G066.0-0.0 (IPHASX J195749.2+290259) and G065.8-0.5 (IPHASX J195920.4+283740). A fifth possible younger, higher density nebula SNR candidate, G067.8+0.5 (IPHASX J200002.4+305035) was discovered about 5 arcmins to the west of IPHASX J195744.9+305306, and warrants further study. A multi-wavelength cross-check from available archived data in the regions of these candidates was also performed with a focus on possible radio counterparts.
We have conducted a detailed multi-wavelength study of the peculiar nebula Abell 48 and its central star. We classify the nucleus as a helium-rich, hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN or a low-mass [WN] inter pretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of PNe, and is not enriched in nitrogen, and thus not the `peeled atmosphere of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B-V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and cannot be a massive WN star. The ionized mass (~0.3 M_Sun) and electron density (700 cm^-3) are typical of middle-aged PNe. The observed stellar spectrum was compared to a grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best fit temperature is 71 kK, and the atmospheric composition is dominated by helium with an upper limit on the hydrogen abundance of 10 per cent. Our results are in very good agreement with the recent study of Todt et al., who determined a hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ~5 per cent. This fraction is higher than any other low-mass H-deficient star, and is not readily explained by current post-AGB models. We give a discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars. There is now tentative evidence for two distinct helium-dominated post-AGB lineages, separate to the helium and carbon dominated surface compositions produced by a late thermal pulse. Further theoretical work is needed to explain these recent discoveries.
We present narrow band AAO/UKST HAlpha images and medium and low resolution optical spectra of a nebula shell putatively associated with the Wolf-Rayet star WR 60. We also present the first identification of this shell in the radio regime at 843 MHz and at 4850 MHz from the Sydney University Molonglo Sky Survey (SUMSS), and from the Parkes-MIT-NRAO (PMN) survey respectively. This radio emission closely follows the optical emission. The optical spectra from the shell exhibits the typical shock excitation signatures sometimes seen in Wolf-Rayet stellar ejecta but also common to supernova remnants. A key finding however, is that the WR 60 star, is not, in fact, anywhere near the geometrical centre of the putative arcuate nebula ejecta as had been previously stated. This was due to an erroneous positional identification for the star in the literature which we now correct. This new identification calls into serious question any association of the nebula with WR 60 as such nebula are usually quite well centred on the WR stars themselves. We now propose that this fact combined with our new optical spectra, deeper HAlpha imaging and newly identified radio structures actually imply that the WR 60 nebula should be reclassified as an unassociated new supernova remnant which we designate G310.5+0.8.
During searches for new optical Galactic supernova remnants (SNRs) in the high resolution, high sensitivity Anglo-Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) HAlpha survey of the southern Galactic plane, we uncovered a variety of filamentary and more diffuse, extensive nebular structures in the vicinity of Wolf-Rayet (WR) star 48 (Theta Muscae), only some of which were previously recognised. We used the double-beam spectrograph of the Mount Stromlo and Siding Spring Observatory (MSSSO) 2.3-m to obtain low and mid resolution spectra of selected new filaments and structures in this region. Despite spectral similarities between the optical spectra of WR star shells and SNRs, a careful assessment of the new spectral and morphological evidence from our deep HAlpha imagery suggests that the putative shell of Theta Mus is not a WR shell at all, as has been commonly accepted, but is rather part of a more complex area of large-scale overlapping nebulosities in the general field of the WR star. The emission comprises a possible new optical supernova remnant and a likely series of complex H II regions. Finally, we present the intriguing detection of apparent collimated, directly opposing, ionized outflows close to Theta Mus itself which appears unique among such stars. Although possible artifacts or a temporary phenomenon monitoring of the star is recommended.
37 - M. Stupar , Q.A. Parker 2009
This is the initial paper in a series presenting the first optical detections and subsequent follow-up spectroscopy of known Southern Galactic supernova remnants (SNRs) previously discovered in the radio. These new detections come from the AAO/UKST H Alpha survey of the Southern Galactic plane which has opened up fresh opportunities to study Galactic remnants. Here we present the first optical imaging and follow-up spectra of Galactic SNR G279.0+1.1 where a series of 14 small-scale fragmented groups of HAlpha filaments have been discovered in a ~2.3 deg. area centred on G279.0+1.1. Individually they are somewhat inconspicuous but collectively they are completely enclosed within the overall radio contours of this known SNR. Three of these filamentary groupings are particularly prominent and optical spectra have been obtained across two of them. Their morphological structure and spectral characteristics are typical of optically detected SNR filaments. Very strong [S II] emission relative to H has been detected with [S II]/HAlpha 0.7 and 1.1, confirming strong, shock heated emission. This is sufficient to classify these filaments in the likely SNR domain and therefore indicating a direct connection with the radio remnant. Other typical SNR emission lines such as [O II] at 3727A, HBeta, [O III] at 4959 and 5007A, HAlpha and [N II] at 6548 and 6584A were also detected, lending strong support to an SNR origin of these optical filaments. The value and insights that these optical data can provide for known remnants are discussed along with their relevance to the Galactic nitrogen abundance. A serendipitous discovery of an adjacent H II region is also briefly described.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا