ترغب بنشر مسار تعليمي؟ اضغط هنا

The putative nebula of the Wolf-Rayet WR 60 star: A case of mistaken identity and reclassification as a new supernova remnant G310.5+0.8

43   0   0.0 ( 0 )
 نشر من قبل Milorad Stupar MS
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present narrow band AAO/UKST HAlpha images and medium and low resolution optical spectra of a nebula shell putatively associated with the Wolf-Rayet star WR 60. We also present the first identification of this shell in the radio regime at 843 MHz and at 4850 MHz from the Sydney University Molonglo Sky Survey (SUMSS), and from the Parkes-MIT-NRAO (PMN) survey respectively. This radio emission closely follows the optical emission. The optical spectra from the shell exhibits the typical shock excitation signatures sometimes seen in Wolf-Rayet stellar ejecta but also common to supernova remnants. A key finding however, is that the WR 60 star, is not, in fact, anywhere near the geometrical centre of the putative arcuate nebula ejecta as had been previously stated. This was due to an erroneous positional identification for the star in the literature which we now correct. This new identification calls into serious question any association of the nebula with WR 60 as such nebula are usually quite well centred on the WR stars themselves. We now propose that this fact combined with our new optical spectra, deeper HAlpha imaging and newly identified radio structures actually imply that the WR 60 nebula should be reclassified as an unassociated new supernova remnant which we designate G310.5+0.8.

قيم البحث

اقرأ أيضاً

72 - Martin Cohen 2005
In a search for new Galactic planetary nebulae from our systematic scans of the Anglo-Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) Halpha survey of the Southern Galactic Plane, we have identified a Pop I Wolf-Rayet star of type WN7h associated with an unusual ring nebula that has a fractured rim. We present imagery in Halpha, the 843-MHz continuum from the Molonglo Observatory Synthesis Telescope (MOST), the mid-infrared from the Midcourse Space Experiment (MSX), and confirmatory optical spectroscopy of the character of the nebula and of its central star. The inner edge of the Halpha shell shows gravitational instabilities with a well-defined wavelength around its complete circumference.
73 - A. Collado 2015
Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of th eir components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {lambda}4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system
During searches for new optical Galactic supernova remnants (SNRs) in the high resolution, high sensitivity Anglo-Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) HAlpha survey of the southern Galactic plane, we uncovered a variety of filamentary and more diffuse, extensive nebular structures in the vicinity of Wolf-Rayet (WR) star 48 (Theta Muscae), only some of which were previously recognised. We used the double-beam spectrograph of the Mount Stromlo and Siding Spring Observatory (MSSSO) 2.3-m to obtain low and mid resolution spectra of selected new filaments and structures in this region. Despite spectral similarities between the optical spectra of WR star shells and SNRs, a careful assessment of the new spectral and morphological evidence from our deep HAlpha imagery suggests that the putative shell of Theta Mus is not a WR shell at all, as has been commonly accepted, but is rather part of a more complex area of large-scale overlapping nebulosities in the general field of the WR star. The emission comprises a possible new optical supernova remnant and a likely series of complex H II regions. Finally, we present the intriguing detection of apparent collimated, directly opposing, ionized outflows close to Theta Mus itself which appears unique among such stars. Although possible artifacts or a temporary phenomenon monitoring of the star is recommended.
133 - A. Roman-Lopes 2011
In this work I communicate the detection of a new Galactic Wolf-Rayet star (WR60a) in Centaurus. The H- and K-band spectra of WR60a, show strong carbon near-infrared emission lines, characteristic of Wolf-Rayet stars of the WC5-7 sub-type. Adopting m ean absolute magnitude M$_K$ and mean intrinsic ($J-K_S$) and ($H-K_S$) colours, it was found that WR60a suffer a mean visual extinction of 3.8$pm$1.3 magnitudes, being located at a probable heliocentric distance of 5.2$pm$0.8 Kpc, which for the related Galactic longitude (l=312) puts this star probably in the Carina-Sagittarius arm at about 5.9 kpc from the Galactic center. I searched for clusters in the vicinity of WR60a, and in principle found no previously known clusters in a search radius region of several tens arc-minutes. The detection of a well isolated WR star induced us to seek for some still unknown cluster, somewhere in the vicinity of WR60a. From inspection of 5.8$mu$m and 8.0$mu$m Spitzer/IRAC GLIMPSE images of the region around the new WR star, it was found strong mid-infrared extended emission at about 13.5 arcmin south-west of WR60a. The study of the the H-K$_S$ colour distribution of point sources associated with the extended emission, reveals the presence of a new Galactic cluster candidate probably formed by at least 85 stars.
Near infrared spectroscopy and photometry of the Wolf-Rayet Star WR 143 (HD 195177) were obtained in the $JHK$ photometric bands. High resolution spectra observed in the J and H bands exhibit narrow 1.083-micron He I line and the H I Pa Beta and the Brackett series lines in emission superposed on the broad emission line spectrum of the Wolf-Rayet star, giving strong indications of the presence of a companion. From the narrow emission lines observed, the companion is identified to be an early-type Be star. The photometric magnitudes exhibit variations in the JHK bands which are probably due to the variability of the companion star. The flux density distribution is too steep for a Wolf-Rayet atmosphere. This is identified to be mainly due to the increasing contribution from the early-type companion star towards shorter wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا