ترغب بنشر مسار تعليمي؟ اضغط هنا

The planetary nebula Abell 48 and its [WN] nucleus

109   0   0.0 ( 0 )
 نشر من قبل David Frew
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have conducted a detailed multi-wavelength study of the peculiar nebula Abell 48 and its central star. We classify the nucleus as a helium-rich, hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN or a low-mass [WN] interpretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of PNe, and is not enriched in nitrogen, and thus not the `peeled atmosphere of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B-V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and cannot be a massive WN star. The ionized mass (~0.3 M_Sun) and electron density (700 cm^-3) are typical of middle-aged PNe. The observed stellar spectrum was compared to a grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best fit temperature is 71 kK, and the atmospheric composition is dominated by helium with an upper limit on the hydrogen abundance of 10 per cent. Our results are in very good agreement with the recent study of Todt et al., who determined a hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ~5 per cent. This fraction is higher than any other low-mass H-deficient star, and is not readily explained by current post-AGB models. We give a discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars. There is now tentative evidence for two distinct helium-dominated post-AGB lineages, separate to the helium and carbon dominated surface compositions produced by a late thermal pulse. Further theoretical work is needed to explain these recent discoveries.



قيم البحث

اقرأ أيضاً

A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission line spectra rese mbling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent), and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.
We have conducted a multi-wavelength study of the planetary nebula Abell 48 and give a revised classification of its nucleus as a hydrogen-deficient star of type [WN4]. The surrounding nebula has a morphology typical of PNe and importantly, is not en riched in nitrogen, and thus not the peeled atmosphere of a massive star. Indeed, no WN4 star is known to be surrounded by such a compact nebula. The ionized mass of the nebula is also a powerful discriminant between the low-mass PN and high-mass WR ejecta interpretations. The ionized mass would be impossibly high if a distance corresponding to a Pop I star was adopted, but at a distance of 2 kpc, the mass is quite typical of moderately evolved PNe. At this distance, the ionizing star then has a luminosity of ~5000 Lsolar, again rather typical for a PN central star. We give a brief discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars.
124 - A. Danehkar 2014
Recent observations reveal that the central star of the planetary nebula Abell 48 exhibits spectral features similar to massive nitrogen-sequence Wolf-Rayet stars. This raises a pertinent question, whether it is still a planetary nebula or rather a r ing nebula of a massive star. In this study, we have constructed a three-dimensional photoionization model of Abell 48, constrained by our new optical integral field spectroscopy. An analysis of the spatially resolved velocity distributions allowed us to constrain the geometry of Abell 48. We used the collisionally excited lines to obtain the nebular physical conditions and ionic abundances of nitrogen, oxygen, neon, sulphur and argon, relative to hydrogen. We also determined helium temperatures and ionic abundances of helium and carbon from the optical recombination lines. We obtained a good fit to the observations for most of the emission-line fluxes in our photoionization model. The ionic abundances deduced from our model are in decent agreement with those derived by the empirical analysis. However, we notice obvious discrepancies between helium temperatures derived from the model and the empirical analysis, as overestimated by our model. This could be due to the presence of a small fraction of cold metal-rich structures, which were not included in our model. It is found that the observed nebular line fluxes were best reproduced by using a hydrogen-deficient expanding model atmosphere as the ionizing source with an effective temperature of 70 kK and a stellar luminosity of 5500 L_sun, which corresponds to a relatively low-mass progenitor star (~ 3 M_sun) rather than a massive Pop I star.
120 - Brent Miszalski 2012
Several [WC]-type central stars of planetary nebulae (PNe) are known to mimic the spectroscopic appearance of massive carbon-rich or WC-type Wolf-Rayet stars. In stark contrast, no [WN]-type central stars have yet been identified as clear-cut analogu es of the common nitrogen-rich or WN-type Wolf-Rayet stars. We have identified the [WN3] central star of IC4663 to be the first unambiguous example in PNe. The low luminosity nucleus and an asymptotic giant branch (AGB) halo surrounding the main nebula prove the bona-fide PN nature of IC4663. Model atmosphere analysis reveals the [WN3] star to have an exotic chemical composition of helium (95%), hydrogen (<2%), nitrogen (0.8%), neon (0.2%) and oxygen (0.05%) by mass. Such an extreme helium-dominated composition cannot be predicted by current evolutionary scenarios for hydrogen deficient [WC]-type central stars. Only with the discovery of IC4663 and its unusual composition can we now connect [WN] central stars to the O(He) central stars in a second H-deficient and He-rich evolutionary sequence, [WN]->O(He), that exists in parallel to the carbon-rich [WC]->PG1159 sequence. This suggests a simpler mechanism, perhaps a binary merger, can better explain H-deficiency in PNe and potentially other H-deficient/He-rich stars. In this respect IC4663 is the best supported case for a possible merged binary central star of a PN.
While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of thes e H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا