ترغب بنشر مسار تعليمي؟ اضغط هنا

198 - Junbin Li , Xi-Ping Zhu 2015
In the previous paper cite{L-Z}, for a characteristic problem with not necessarily small initial data given on a complete null cone decaying like that in the work cite{Ch-K} of the stability of Minkowski spacetime by Christodoulou and Klainerman, we proved the local existence in retarded time, which means the solution to the vacuum Einstein equations exists in a uniform future neighborhood, while the global existence in retarded time is the weak cosmic censorship conjecture. In this paper, we prove that the local existence in retarded time still holds when the data is assumed to decay slower, like that in Bieris work cite{Bie} on the extension to the stability of Minkowski spacetime. Such decay guarantees the existence of the limit of the Hawking mass on the initial null cone, when approaching to infinity, in an optimal way.
138 - Junbin Li , Xi-Ping Zhu 2014
We consider a characteristic problem of the vacuum Einstein equations with part of the initial data given on a future complete null cone with suitable decay, and show that the solution exists uniformly around the null cone for general such initial da ta. We can then define a segment of the future null infinity. The initial data are not required to be small and the decaying condition inherits from the works of cite{Ch-K} and cite{K-N}.
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3 9], F. H. Lin proposed a challenge problem: Can the Holder continuity be improved to Lipschitz continuity? J. Jost also asked a similar problem about Lipschitz regularity of harmonic maps between singular spaces (see Page 38 in [28]). The main theorem of this paper gives a complete resolution to it.
In this paper, we prove a classification theorem of 4-manifolds according to some conformal invariants, which generalizes the conformally invariant sphere theorem of Chang-Gursky-Yang cite{CGY}. Moreover, it provides a four-dimensional analogue of th e well-known classification theorem of Schoen-Yau cite{SY2} on 3-manifolds with positive Yamabe invariants.
Motivated by the importance of geometric information in real systems, a new model for long-range correlated percolation in link-adding networks is proposed with the connecting probability decaying with a power-law of the distance on the two-dimension al(2D) plane. By overlapping it with Achlioptas process, it serves as a gravity model which can be tuned to facilitate or inhibit the network percolation in a generic view, cover a broad range of thresholds. Moreover, it yields a set of new scaling relations. In the present work, we develop an approach to determine critical points for them by simulating the temporal evolutions of type-I, type-II and type-III links(chosen from both inter-cluster links, an intra-cluster link compared with an inter-cluster one, and both intra-cluster ones, respectively) and corresponding average lengths. Numerical results have revealed objective competition between fractions, average lengths of three types of links, verified the balance happened at critical points. The variation of decay exponents $a$ or transmission radius $R$ always shifts the temporal pace of the evolution, while the steady average lengths and the fractions of links always keep unchanged just as the values in Achlioptas process. Strategy with maximum gravity can keep steady average length, while that with minimum one can surpass it. Without the confinement of transmission range, $bar{l} to infty$ in thermodynamic limit, while $bar{l}$ does not when with it. However, both mechanisms support critical points. In two-dimensional free space, the relevance of correlated percolation in link-adding process is verified by validation of new scaling relations with various exponent $a$, which violates the scaling law of Weinribs.
In the previous work [35], the second and third authors established a Bochner type formula on Alexandrov spaces. The purpose of this paper is to give some applications of the Bochner type formula. Firstly, we extend the sharp lower bound estimates of spectral gap, due to Chen-Wang [9, 10] and Bakry-Qian [6], from smooth Riemannian manifolds to Alexandrov spaces. As an application, we get an Obata type theorem for Alexandrov spaces. Secondly, we obtain (sharp) Li-Yaus estimate for positve solutions of heat equations on Alexandrov spaces.
In this paper, we establish a Bochner type formula on Alexandrov spaces with Ricci curvature bounded below. Yaus gradient estimate for harmonic functions is also obtained on Alexandrov spaces.
Recently, in [49], a new definition for lower Ricci curvature bounds on Alexandrov spaces was introduced by the authors. In this article, we extend our research to summarize the geometric and analytic results under this Ricci condition. In particular , two new results, the rigidity result of Bishop-Gromov volume comparison and Lipschitz continuity of heat kernel, are obtained.
In this paper, we introduce a new notion for lower bounds of Ricci curvature on Alexandrov spaces, and extend Cheeger-Gromoll splitting theorem and Chengs maximal diameter theorem to Alexandrov spaces under this Ricci curvature condition.
In this paper, we completely classify all compact 4-manifolds with positive isotropic curvature. We show that they are diffeomorphic to $mathbb{S}^4,$ or $mathbb{R}mathbb{P}^4$ or quotients of $mathbb{S}^3times mathbb{R}$ by a cocompact fixed point f ree subgroup of the isometry group of the standard metric of $mathbb{S}^3times mathbb{R}$, or a connected sum of them.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا