ﻻ يوجد ملخص باللغة العربية
In this paper, we prove a classification theorem of 4-manifolds according to some conformal invariants, which generalizes the conformally invariant sphere theorem of Chang-Gursky-Yang cite{CGY}. Moreover, it provides a four-dimensional analogue of the well-known classification theorem of Schoen-Yau cite{SY2} on 3-manifolds with positive Yamabe invariants.
We show a sharp conformally invariant gap theorem for Yang-Mills connections in dimension 4 by exploiting an associated Yamabe-type problem.
The requirement that a (non-Einstein) Kahler metric in any given complex dimension $m>2$ be almost-everywhere conformally Einstein turns out to be much more restrictive, even locally, than in the case of complex surfaces. The local biholomorphic-isom
This paper is devoted to the classification of 4-dimensional Riemannian spin manifolds carrying skew Killing spinors. A skew Killing spinor $psi$ is a spinor that satisfies the equation $ abla$X$psi$ = AX $times$ $psi$ with a skew-symmetric endomorph
We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (R. C. Heitmann, C. Radin, J. Stat.
We establish a new criterion for a compatible almost complex structure on a symplectic four-manifold to be integrable and hence Kahler. Our main theorem shows that the existence of three linearly independent closed J-anti-invariant two-forms implies