ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - Piero Ranalli 2012
Charge-exchange (CE) emission produces features which are detectable with the current X-ray instrumentation in the brightest near galaxies. We describe these aspects in the observed X-ray spectra of the star forming galaxies M82 and NGC 3256, from th e Suzaku and XMM-Newton telescopes. Emission from both ions (O, C) and neutrals (Mg, Si) is recognised. We also describe how microcalorimeter instrumentation on future missions will improve CE observations.
123 - Piero Ranalli 2010
The main results from a deep X-ray observation of M82 are summarised: spatially-dependent chemical abundances, temperature structure of the gas, charge-exchange emission lines in the spectrum. We also present an update of the chemical bundances, based on a more refined extraction of spectra.
87 - Piero Ranalli 2010
Star forming galaxies represent a small yet sizable fraction of the X-ray sky (1%-20%, depending on the flux). X-ray surveys allow to derive their luminosity function and evolution, free from uncertainties due to absorption. However, much care must b e put in the selection criteria to build samples clean from contamination by AGN. Here we review the possibilities offered by the proposed WFXT mission for their study. We analyze the expected luminosity and redshift distributions of star forming galaxies in the proposed WFXT surveys. We discuss the impact of such a mission on the knowledge of the cosmic star formation history, and provide a few suggestions.
We report on the analysis of a deep (100 ks) observation of the starburst galaxy M82 with the EPIC and RGS instruments on board the X-ray telescope XMM-Newton. The broad-band (0.5-10 keV) emission is due to at least three spectral components: i) cont inuum emission from point sources; ii) thermal plasma emission from hot gas; iii) charge exchange emission from neutral metals (Mg and Si). The plasma emission has a double-peaked differential emission measure, with the peaks at ~0.5 keV and ~7 keV. Spatially resolved spectroscopy has shown that the chemical absolute abundances are not uniformly distributed in the outflow, but are larger in the outskirts and smaller close to the galaxy centre. The abundance ratios also show spatial variations. The X-ray derived Oxygen abundance is lower than that measured in the atmospheres of red supergiant stars, leading to the hypothesis that a significant fraction of Oxygen ions have already cooled off and no longer emit at energies > ~0.5 keV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا