ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray gaseous emission in the galaxy M82

119   0   0.0 ( 0 )
 نشر من قبل Piero Ranalli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Piero Ranalli




اسأل ChatGPT حول البحث

The main results from a deep X-ray observation of M82 are summarised: spatially-dependent chemical abundances, temperature structure of the gas, charge-exchange emission lines in the spectrum. We also present an update of the chemical bundances, based on a more refined extraction of spectra.

قيم البحث

اقرأ أيضاً

It has been proposed that the charge exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star forming galaxies. We analyze the XMM-Newton/RGS spectrum of M82, using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the K$alpha$ triplets of various He-like ions, but also good fractions of the Ly$alpha$ transitions of C VI (~87%), O VIII and N VII ($gtrsim$50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 AA band originates in the CX. We infer an ion incident rate of $3times10^{51},rm{s^{-1}}$ undergoing CX at the hot and cool gas interface, and an effective area of the interface as $sim2times10^{45},{rm cm^2}$ that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.
Expanding X-ray cavities observed in hot gas atmospheres of many galaxy groups and clusters generate shock waves and turbulence that are primary heating mechanisms required to avoid uninhibited radiatively cooling flows which are not observed. Howeve r, we show here that the evolution of buoyant cavities also stimulates radiative cooling of observable masses of low-temperature gas. During their early evolution, radiative cooling occurs in the wakes of buoyant cavities in two locations: in thin radial filaments parallel to the buoyant velocity and more broadly in gas compressed beneath rising cavities. Radiation from these sustained compressions removes entropy from the hot gas. Gas experiencing the largest entropy loss cools first, followed by gas with progressively less entropy loss. Most cooling occurs at late times, $sim 10^8-10^9$ yrs, long after the X-ray cavities have disrupted and are impossible to detect. During these late times, slightly denser low entropy gas sinks slowly toward the centers of the hot atmospheres where it cools intermittently, forming clouds near the cluster center. Single cavities of energy $10^{57}-10^{58}$ ergs in the atmosphere of the NGC 5044 group create $10^8 - 10^9$ $M_{odot}$ of cooled gas, exceeding the mass of extended molecular gas currently observed in that group. The cooled gas clouds we compute share many attributes with molecular clouds recently observed in NGC 5044 with ALMA: self-gravitationally unbound, dust-free, quasi-randomly distributed within a few kpc around the group center.
We report on the discovery of SN2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova over a wide range of the electromagnetic spectrum. The first set of optical, near-IR and mi d-IR observations of SN2014J, orchestrated by the intermediate Palomar Transient Factory (iPTF), show that SN2014J is a spectroscopically normal Type Ia supernova, albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the lightcurve rise. Similarly to other highly reddened Type Ia supernovae, a low value of total-to-selective extinction, Rv < 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from HST with special emphasis on the sources nearest to the SN location.
We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L[0.5-2keV]~10^{39} erg s$^{-1}$), extending ~2 kpc from the active nucleus and filling in the cavity of the HI material. The best fit to the X-ray spectrum requires either a kT~0.25 keV thermal plasma or a photoionized component. In the thermal scenario, hot gas heated by the nuclear outflow would be confined by the thermal pressure of the HI gas and the dynamic pressure of inflowing neutral material in the galactic disk. In the case of photoionization, the nucleus must have experienced an Eddington limit outburst. For both scenarios, the AGN-host interaction in NGC 4151 must have occured relatively recently (some 10^4 yr ago). This very short timescale to the last episode of high activity phase may imply such outbursts occupy $gtrsim$1% of AGN lifetime.
88 - K. Iwasawa 2021
We searched for X-ray supernova remnants (SNRs) in the starburst region of M82, using archival data from the Chandra X-ray Observatory with a total effective exposure time of 620 ks with an X-ray spectroscopic selection. Strong line-emission from Fe xxv at 6.7 keV is a characteristic spectral feature of hot, shocked gas of young SNRs and distinctive among the discrete sources in the region populated by X-ray binaries. We selected candidates using narrow-band imaging aimed at the line excess and identified six (and possibly a seventh) X-ray SNRs. Two previously known examples were recovered by our selection. Five of them have radio counterparts, including the radio supernova SN2008iz, which was discovered as a radio transient in 2008. It shows a hard X-ray spectrum with a blueshifted Fe K feature with v ~ -2700 km/s, both of which suggest its youth. The 4-8 keV luminosities of the selected SNRs are in the range of (0.3-3)e38 erg/s. We made a crude estimate of the supernova rate, assuming that more luminous SNRs are younger, and found 0.06 (0.03-0.13) /yr, in agreement with the supernova rates estimated by radio observations and the generally believed star formation rate of M82, although the validity of the assumption is questionable. A sum of the Fe xxv luminosity originating from the selected X-ray SNRs consists of half of the total Fe xxv luminosity observed in the central region of M82. We briefly discuss its implications for starburst winds and the Fe xxv emission in more luminous starburst galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا