ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of star forming galaxies with the Wide Field X-ray Telescope

127   0   0.0 ( 0 )
 نشر من قبل Piero Ranalli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Piero Ranalli




اسأل ChatGPT حول البحث

Star forming galaxies represent a small yet sizable fraction of the X-ray sky (1%-20%, depending on the flux). X-ray surveys allow to derive their luminosity function and evolution, free from uncertainties due to absorption. However, much care must be put in the selection criteria to build samples clean from contamination by AGN. Here we review the possibilities offered by the proposed WFXT mission for their study. We analyze the expected luminosity and redshift distributions of star forming galaxies in the proposed WFXT surveys. We discuss the impact of such a mission on the knowledge of the cosmic star formation history, and provide a few suggestions.



قيم البحث

اقرأ أيضاً

We list here the contents of the Proceedings of the Wide Field X-ray Telescope conference held in Bologna, Italy on 25-26 Nov 2009. The conference highlighted the scientific potential and discovery space provided by an X-ray mission concept character ized by a wide field-of-view (1 sq.deg.), large effective area (1 sq.mt.) and approximately constant PSF (~5 arcsec HEW) across the whole FOV. The index is in html form with clickable links to the individual contributions.
122 - P. Rosati , S. Borgani , R. Gilli 2010
The Wide Field X-Ray Telescope (WFXT) is a medium-class mission designed to be 2-orders-of-magnitude more sensitive than any previous or planned X-ray mission for large area surveys and to match in sensitivity the next generation of wide-area optical , IR and radio surveys. Using an innovative wide-field X-ray optics design, WFXT provides a field of view of 1 square degree (10 times Chandra) with an angular resolution of 5 (Half Energy Width, HEW) nearly constant over the entire field of view, and a large collecting area (up to 1 m^2 at 1 keV, > 10x Chandra) over the 0.1-7 keV band. WFXTs low-Earth orbit also minimizes the particle background. In five years of operation, WFXT will carry out three extragalactic surveys at unprecedented depth and address outstanding questions in astrophysics, cosmology and fundamental physics. In this article, we illustrate the mission concept and the connection between science requirements and mission parameters.
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRSTs design where small adjustments could greatly improve its power as an astrometric instrument.
The Wide Field Infrared Survey Telescope (WFIRST) is a 2.4m space telescope with a 0.281 deg^2 field of view for near-IR imaging and slitless spectroscopy and a coronagraph designed for > 10^8 starlight suppresion. As background information for Astro 2020 white papers, this article summarizes the current design and anticipated performance of WFIRST. While WFIRST does not have the UV imaging/spectroscopic capabilities of the Hubble Space Telescope, for wide field near-IR surveys WFIRST is hundreds of times more efficient. Some of the most ambitious multi-cycle HST Treasury programs could be executed as routine General Observer (GO) programs on WFIRST. The large area and time-domain surveys planned for the cosmology and exoplanet microlensing programs will produce extraordinarily rich data sets that enable an enormous range of Archival Research (AR) investigations. Requirements for the coronagraph are defined based on its status as a technology demonstration, but its expected performance will enable unprecedented observations of nearby giant exoplanets and circumstellar disks. WFIRST is currently in the Preliminary Design and Technology Completion phase (Phase B), on schedule for launch in 2025, with several of its critical components already in production.
The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and tim ing resolution imaging and spectroscopic observations the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal plane detector, providing a field of view of 18 arcsec will be the main detector. Based on the actual mechanics, thermal and shielding design we present estimates for the WFI cosmic ray induced background obtained by the use of Monte-Carlo simulations and possible background reduction measures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا