ترغب بنشر مسار تعليمي؟ اضغط هنا

The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite e ntangled pair states gained new ground state optimization methods based on automatic differentiation, which are at the same time highly accurate and simple to implement. Naturally, the question arises whether these new ideas can also be used to optimize the excitation ansatz, which has recently been implemented in two dimensions as well. In this paper, we describe a straightforward way to reimplement the framework for excitations using automatic differentiation, and demonstrate its performance for the Hubbard model at half filling.
Motivated by the intriguing properties of the Shastry-Sutherland compound SrCu2(BO3)2 under pressure, with a still debated intermediate plaquette phase appearing at around 20 kbar and a possible deconfined critical point at higher pressure upon enter ing the antiferromagnetic phase, we have investigated its high-field properties in this pressure range using tunnel diode oscillator (TDO) measurements. The two main new phases revealed by these measurements are fully consistent with those identified by infinite Projected Entangled Pair states (iPEPS) calculations of the Shastry-Sutherland model, a 1/5 plateau and a 10 x 2 supersolid. Remarkably, these phases are descendants of the full-plaquette phase, the prominent candidate for the intermediate phase of SrCu2(BO3)2. The emerging picture for SrCu2(BO3)2 is shown to be that of a system dominated by a tendency to an orthorhombic distortion at intermediate pressure, an important constraint on any realistic description of the transition into the antiferromagnetic phase.
We present an extension of a framework for simulating single quasiparticle or collective excitations on top of strongly correlated quantum many-body ground states using infinite projected entangled pair states, a tensor network ansatz for two-dimensi onal wave functions in the thermodynamic limit. Our approach performs a systematic summation of locally perturbed states in order to obtain excited eigenstates localized in momentum space, using the corner transfer matrix method, and generalizes the framework to arbitrary unit cell sizes, the implementation of global Abelian symmetries and fermionic systems. Results for several test cases are presented, including the transverse Ising model, the spin-$frac{1}{2}$ Heisenberg model and a free fermionic model, to demonstrate the capability of the method to accurately capture dispersions. We also provide insight into the nature of excitations at the $k=(pi,0)$ point of the Heisenberg model.
We study the competition between stripe states with different periods and a uniform $d$-wave superconducting state in the extended 2D Hubbard model at 1/8 hole doping using infinite projected entangled-pair states (iPEPS). With increasing strength of negative next-nearest neighbor hopping $t$, the preferred period of the stripe decreases. For the values of $t$ predicted for cuprate high-T$_c$ superconductors, we find stripes with a period 4 in the charge order, in agreement with experiments. Superconductivity in the period 4 stripe is suppressed at $1/8$ doping. Only at larger doping, $0.18 lesssim delta < 0.25$, the period 4 stripe exhibits coexisting $d$-wave superconducting order. The uniform $d$-wave state is only favored for sufficiently large positive $t$.
The thermodynamic properties of the Shastry-Sutherland model have posed one of the longest-lasting conundrums in frustrated quantum magnetism. Over a wide range on both sides of the quantum phase transition (QPT) from the dimer-product to the plaquet te-based ground state, neither analytical nor any available numerical methods have come close to reproducing the physics of the excited states and thermal response. We solve this problem in the dimer-product phase by introducing two qualitative advances in computational physics. One is the use of thermal pure quantum (TPQ) states to augment dramatically the size of clusters amenable to exact diagonalization. The second is the use of tensor-network methods, in the form of infinite projected entangled pair states (iPEPS), for the calculation of finite-temperature quantities. We demonstrate convergence as a function of system size in TPQ calculations and of bond dimension in our iPEPS results, with complete mutual agreement even extremely close to the QPT. Our methods reveal a remarkably sharp and low-lying feature in the magnetic specific heat around the QPT, whose origin appears to lie in a proliferation of excitations composed of two-triplon bound states. The surprisingly low energy scale and apparently extended spatial nature of these states explain the failure of less refined numerical approaches to capture their physics. Both of our methods will have broad and immediate application in addressing the thermodynamic response of a wide range of highly frustrated magnetic models and materials.
We consider the finite-temperature phase diagram of the $S = 1/2$ frustrated Heisenberg bilayer. Although this two-dimensional system may show magnetic order only at zero temperature, we demonstrate the presence of a line of finite-temperature critic al points related to the line of first-order transitions between the dimer-singlet and -triplet regimes. We show by high-precision quantum Monte Carlo simulations, which are sign-free in the fully frustrated limit, that this critical point is in the Ising universality class. At zero temperature, the continuous transition between the ordered bilayer and the dimer-singlet state terminates on the first-order line, giving a quantum critical end point, and we use tensor-network calculations to follow the first-order discontinuities in its vicinity.
Competing inhomogeneous orders are a central feature of correlated electron materials including the high-temperature superconductors. The two- dimensional Hubbard model serves as the canonical microscopic physical model for such systems. Multiple ord ers have been proposed in the underdoped part of the phase diagram, which corresponds to a regime of maximum numerical difficulty. By combining the latest numerical methods in exhaustive simulations, we uncover the ordering in the underdoped ground state. We find a stripe order that has a highly compressible wavelength on an energy scale of a few Kelvin, with wavelength fluctuations coupled to pairing order. The favored filled stripe order is different from that seen in real materials. Our results demonstrate the power of modern numerical methods to solve microscopic models even in challenging settings.
253 - Philippe Corboz 2016
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local Hamiltonian. The method is based on a systematic summation of Hamiltonian contributions using the corner transfer-matrix method. Benchmark results for challenging problems are presented, including the 2D Heisenberg model, the Shastry-Sutherland model, and the t-J model, which show that the variational scheme yields considerably more accurate results than the previously best imaginary time evolution algorithm, with a similar computational cost and with a faster convergence towards the ground state.
82 - Philippe Corboz 2015
An infinite projected entangled-pair state (iPEPS) is a variational tensor network ansatz for 2D wave functions in the thermodynamic limit where the accuracy can be systematically controlled by the bond dimension $D$. We show that for the doped Hubba rd model in the strongly correlated regime ($U/t=8$, $n=0.875$) iPEPS yields lower variational energies than state-of-the-art variational methods in the large 2D limit, which demonstrates the competitiveness of the method. In order to obtain an accurate estimate of the energy in the exact infinite $D$ limit we introduce and test an extrapolation technique based on a truncation error computed in the iPEPS imaginary time evolution algorithm. The extrapolated energies are compared with accurate quantum Monte Carlo results at half filling and with various other methods in the doped, strongly correlated regime.
Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states (iPEPS) confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only slightly lower energy than the stripe with anti-phase d-wave order. The optimal stripe filling is not constant but increases with J/t. A nematic anisotropy reduces the pairing amplitude and the energies of stripe phases are lowered relative to the uniform state with increasing nematicity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا