ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we show that Quiescent Cosmology [1, 2, 3] is consistent with Penroses Weyl Curvature Hypothesis and the notion of gravitational entropy [4]. Gravitational entropy, from a conceptual point of view, acts in an opposite fashion to the mor e familiar notion of entropy. A closed system of gravitating particles will coalesce whereas a collection of gas particles will tend to diffuse; regarding increasing entropy, these two scenarios are identical. What has been shown previously [2, 3] is that gravitational entropy at the initial singularity predicted by Quiescent Cosmology - the Isotropic Past Singularity (IPS) - tends to zero. The results from this paper show that not only is this the case but that gravitational entropy increases as this singularity evolves. In the first section of this paper we present relevant background information and motivation. In the second section of this paper we present the main results of this paper. Our third section contains a discussion of how this result will inspire future research before we make concluding remarks in our final section.
In this paper we demonstrate that there are large classes of Friedmann-Robertson-Walker (FRW) cosmologies that admit isotropic conformal structures of Quiescent Cosmology. FRW models have long been known to admit singularities such as Big Bangs and B ig Crunches [1, 2] but recently it has been shown that there are other cosmological structures that these solutions contain. These structures are Big Rips, Sudden Singularities and Extremality Events [1, 2]. Within the Quiescent Cosmology framework [3] there also exist structures consistent with a cosmological singularity known as the Isotropic Past Singularity (IPS) [4, 5]. There also exists a cosmological final state known as a Future Isotropic Universe (FIU) [4], which strictly speaking, doesnt fit with the fundamental ideals of Quiescent Cosmology. In this paper, we compare the cosmological events of a large class of FRW solutions to the conformal structures of Quiescent Cosmology [4]. In the first section of this paper we present the relevant background information and our motivation. In the second section of this paper we construct conformal relationships for relevant FRW models. The third section contains a thorough discussion of a class of FRW solutions that cannot represent any of the previously constructed isotropic conformal structures from Quiescent Cosmology. The final section contains our remarks and future outlook for further study of this field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا