ترغب بنشر مسار تعليمي؟ اضغط هنا

A method for modelling the prompt production of molecular states using the hadronic rescattering framework of the general-purpose Pythia event generator is introduced. Production cross sections of possible exotic hadronic molecules via hadronic resca ttering at the LHC are calculated for the $chi_{c1}(3872)$ resonance, a possible tetraquark state, as well as three possible pentaquark states, $P_c^+(4312)$, $P_c^+(4440)$, and $P_c^+(4457)$. For the $P_c^+$ states, the expected cross section from $Lambda_b$ decays is compared to the hadronic-rescattering production. The $chi_{c1}(3872)$ cross section is compared to the fiducial $chi_{c1}(3872)$ cross-section measurement by LHCb and found to contribute at a level of O(1%). Finally, the expected yields of $P_c^+$ production from hadronic rescattering during Run 3 of LHCb are estimated. The prompt background is found to be significantly larger than the prompt $P_c^+$ signal from hadronic rescattering.
In high-energy physics, Monte Carlo event generators (MCEGs) are used to simulate the interactions of high energy particles. MCEG event records store the information on the simulated particles and their relationships, and thus reflects the simulated evolution of physics phenomena in each collision event. We present the HepMC3 library, a next-generation framework for MCEG event record encoding and manipulation, which builds on the functionality of its widely-used predecessors to enable more sophisticated algorithms for event-record analysis. By comparison to previo
144 - Philip Ilten 2019
Monte Carlo generation of high energy particle collisions is a critical tool for both theoretical and experimental particle physics, connecting perturbative calculations to phenomenological models, and theory predictions to full detector simulation. The generation of minimum bias events can be particularly computationally expensive, where non-perturbative effects play an important role and specific processes and fiducial regions can no longer be well defined. In particular scenarios, particle guns can be used to quickly sample kinematics for single particles produced in minimum bias events. CIMBA (Cubic Interpolation for Minimum Bias Approximation) provides a comprehensive package to smoothly sample predefined kinematic grids, from any general purpose Monte Carlo generator, for all particles produced in minimum bias events. These grids are provided for a number of beam configurations including those of the Large Hadron Collider.
We study the potential of the LHCb experiment to discover, for the first time, the $mu^+mu^-$ true muonium bound state. We propose a search for the vector $1^3S_1$ state, $mathcal{T!M}$, which kinetically mixes with the photon and dominantly decays t o $e^+e^-$. We demonstrate that a search for $eta to gamma mathcal{T!M}$, $mathcal{T!M}to e^+e^-$ in a displaced vertex can exceed a significance of 5 standard deviations assuming statistical uncertainties. We present two possible searches: an inclusive search for the $e^+e^-$ vertex, and an exclusive search which requires an additional photon and a reconstruction of the $eta$ mass.
Searches for dark photons provide serendipitous discovery potential for other types of vector particles. We develop a framework for recasting dark photon searches to obtain constraints on more general theories, which includes a data-driven method for determining hadronic decay rates. We demonstrate our approach by deriving constraints on a vector that couples to the $B!-!L$ current, a leptophobic $B$ boson that couples directly to baryon number and to leptons via $B$-$gamma$ kinetic mixing, and on a vector that mediates a protophobic force. Our approach can easily be generalized to any massive gauge boson with vector couplings to the Standard Model fermions, and software to perform any such recasting is provided at https://gitlab.com/philten/darkcast .
99 - Philip Ilten 2015
Inclusive c and b-jet tagging algorithms have been developed to utilize the excellent secondary vertex reconstruction and resolution capabilities of the LHCb detector. The validation and performance of these tagging algorithms are reported using the full run 1 LHCb dataset at 7 and 8 TeV. Jet-tagging has been applied to muon+jet final states to measure both the W+c,b-jet charge asymmetries and the ratios of W+c,b-jet to W+jet and W+jet to Z+jet production. The forward top production cross-section is also measured using the muon+b-jet final. All results are found to be consistent with standard model predictions.
The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the deca y of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all interesting decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays.
46 - Philip Ilten 2014
Spin correlations for tau lepton decays are included in the Pythia 8 event generation software and the spin correlations for the decays of tau leptons produced from electroweak and Higgs bosons are calculated. Decays of the tau lepton using sophistic ated resonance models are included in Pythia 8 for all channels with experimentally observed branching fractions greater than 0.04%. The mass distributions for the decay products of these channels are validated and the technical implementation of these decays is described. A measurement of the inclusive Z to di-tau cross-section using 1.0 inverse fb of data from pp collisions at sqrt(s) = 7 TeV collected with the LHCb detector is presented. Reconstructed final states containing two muons, a muon and an electron, a muon and a charged hadron, or an electron and a charged hadron are selected as candidates. The cross-section for Z bosons with a mass between 60 and 120 GeV decaying into tau leptons with pseudo-rapidities between 2.0 and 4.5 and transverse momenta greater than 20 GeV is measured to be 72.3 +- 3.5 +- 2.9 +- 2.5 pb. The first uncertainty is statistical, the second uncertainty is systematic, and the third is to due the integrated luminosity uncertainty. Limits on the production of neutral Higgs bosons decaying into tau lepton pairs with pseudo-rapidities between 2.0 and 4.5 are set at a 95% confidence level using the same LHCb dataset. A model independent upper limit on the production of neutral Higgs bosons decaying into tau leptons is set and ranges between 8.6 pb for a Higgs boson mass of 90 GeV to 0.7 pb for a Higgs boson mass of 250 GeV. An upper limit on tan-beta in the CP-odd Higgs mass and tan-beta plane is set for the mh-max scenario of the minimal supersymmetric model and varies from 34 for a CP-odd Higgs boson mass of 90 GeV to 70 for a CP-odd Higgs boson mass of 140 GeV.
52 - Philip Ilten 2012
Measurements of the $Z to tautau$ and $W to tau u_tau$ cross-sections at the LHC with data taken at $sqrt{s} = 7$ TeV are reported for the ATLAS, CMS, and LHCb experiments. All results are found to agree with the Standard Model.
77 - Philip Ilten 2012
As of version 8.150 of Pythia, the isotropic decay model of tau-leptons has been replaced with sophisticated tau-lepton decay machinery. The decays and spin correlations for tau-leptons in Pythia 8 are described, including the spin correlation algori thm, the available tau-lepton production processes, the tau-lepton decay models, the user interface, and the implementation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا