ﻻ يوجد ملخص باللغة العربية
In high-energy physics, Monte Carlo event generators (MCEGs) are used to simulate the interactions of high energy particles. MCEG event records store the information on the simulated particles and their relationships, and thus reflects the simulated evolution of physics phenomena in each collision event. We present the HepMC3 library, a next-generation framework for MCEG event record encoding and manipulation, which builds on the functionality of its widely-used predecessors to enable more sophisticated algorithms for event-record analysis. By comparison to previo
We discuss prospects for Monte Carlo event generators incorporating the dynamics of transverse momentum dependent (TMD) parton distribution functions. We illustrate TMD evolution in the parton branching formalism, and present Monte Carlo applications of the method.
Monte Carlo event generators (MCEGs) are the indispensable workhorses of particle physics, bridging the gap between theoretical ideas and first-principles calculations on the one hand, and the complex detector signatures and data of the experimental
In this talk the most recent results obtained by interfacing GoSam with external Monte Carlo event generators are presented and summarized. In the last year the automatic one-loop amplitude generator GoSam has been used for the computation of several
The leading-order accurate description of top quark pair production, as usually employed in standard Monte Carlo event generators, gives no rise to the generation of a forward--backward asymmetry. Yet, non-negligible -- differential as well as inclus
Motivated by the recent galactic center gamma-ray excess identified in the Fermi-LAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gamma-rays from Dark-Matter (DM) annihilation. When Dar