ترغب بنشر مسار تعليمي؟ اضغط هنا

Serendipity in dark photon searches

93   0   0.0 ( 0 )
 نشر من قبل Mike Williams
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Searches for dark photons provide serendipitous discovery potential for other types of vector particles. We develop a framework for recasting dark photon searches to obtain constraints on more general theories, which includes a data-driven method for determining hadronic decay rates. We demonstrate our approach by deriving constraints on a vector that couples to the $B!-!L$ current, a leptophobic $B$ boson that couples directly to baryon number and to leptons via $B$-$gamma$ kinetic mixing, and on a vector that mediates a protophobic force. Our approach can easily be generalized to any massive gauge boson with vector couplings to the Standard Model fermions, and software to perform any such recasting is provided at https://gitlab.com/philten/darkcast .



قيم البحث

اقرأ أيضاً

We propose to search the monophoton events at the BESIII detector and future Super Tau Charm Factory to probe the sub-GeV dark photon decay into lighter dark matter. We compute the cross section due to the dark photon associated a standard model phot on production, and study the corresponding standard model irreducible/reducible backgrounds. By using the data about 17 fb$^{-1}$ collected at the BESIII detector since 2011, we derive new leading limits of the mixing strength $varepsilon$, $varepsilonlesssim(1.1-1.6)times 10^{-4}$, in the mass range of 0.04 GeV $lesssim m_{A^prime} lesssim$ 3 GeV. With 30 ab$^{-1}$ data, STCF running at $sqrt{s} = 2$ GeV, can probe $varepsilon$ down to 5.1$times 10^{-6}$ when $m_{A^prime}=1$ GeV. For models of scalar and fermionic light thermal dark matter production via dark photon, we present the constrains on the dimensionless dark matter parameter $y=varepsilon^2alpha_D(m_chi/m_{A^prime})^4$ as function of the DM mass $m_{chi}$ at BESIII and future STCF, conventionally assuming the dark coupling constant $alpha_D=0.5$ and $m_{A^prime}=3 m_{chi}$. We find that BESIII can exclude model of scalar, Majorana, and pseudo-Dirac (with a small splitting) DM for the mass region 0.03$sim$1 GeV, 0.04$sim$1 GeV and 0.4$sim$1 GeV respectively. For values $alpha_Dlesssim 0.005$, combining the results from 2 GeV STCF with 30 ab$^{-1}$ data and BaBar, one can exclude the above three DM models in the mass region 0.001 GeV $lesssim m_{chi} lesssim$ 1 GeV.
Dark matter could be made up of dark photons, massive but very light particles whose interactions with matter resemble those of usual photons but suppressed by a small mixing parameter. We analyze the main approaches to dark photon interactions and h ow they can be applied to direct detection experiments which test different ranges of masses and mixings. A new experiment based on counting dark photons from induced atomic transitions in a target material is proposed. This approach appears to be particularly appropriate for dark photon detection in the meV mass range, extending the constraints in the mixing parameter by up to eight orders of magnitude with respect to previous experiments.
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example o f energetic light dark matter, we scrutinize two representative search channels, electron scattering and proton scattering including deep inelastic scattering processes, in the context of elastic and inelastic boosted dark matter, in a completely detector-independent manner. In this work, a dark gauge boson is adopted as the particle to mediate the interactions between the Standard Model particles and boosted dark matter. We find that the signal sensitivity of the two channels highly depends on the (mass-)parameter region to probe, so search strategies and channels should be designed sensibly especially at the earlier stage of experiments. In particular, the contribution from the boosted-dark-matter-initiated deep inelastic scattering can be subleading (important) compared to the quasi-elastic proton scattering, if the mass of the mediator is below (above) $mathcal{O}$(GeV). We demonstrate how to practically perform searches and relevant analyses, employing example detectors such as DarkSide-20k, DUNE, Hyper-Kamiokande, and DeepCore, with their respective detector specifications taken into consideration. For other potential detectors we provide a summary table, collecting relevant information, from which similar studies can be fulfilled readily.
Direct-detection searches for axions and hidden photons are playing an increasingly prominent role in the search for dark matter. In this work, we derive the properties of optimal electromagnetic searches for these candidates, subject to the Standard Quantum Limit (SQL) on amplification. We show that a single-pole resonant search may possess substantial sensitivity outside of the resonator bandwidth and that optimizing this sensitivity may increase scan rates by up to five orders of magnitude at low frequencies. Additional enhancements can be obtained with resonator quality factors exceeding one million, which corresponds to the linewidth of the dark matter signal. We present the resonator optimization in the broader context of determining the optimal receiver architecture (resonant or otherwise). We discuss prior probabilities on the dark matter signal and their role in the search optimization. We determine frequency-integrated sensitivity to be the figure of merit in a wideband search and demonstrate that it is limited by the Bode-Fano criterion. The optimized single-pole resonator is approximately 75% of the Bode-Fano limit, establishing it as a fundamentally near-ideal, single-moded dark matter detection scheme. Our analysis shows, in contrast to previous work, that the scanned single-pole resonant search is superior to a reactive broadband search. Our results motivate the broad application of quantum measurement techniques evading the SQL in future axion and hidden-photon dark matter searches.
64 - Dimitri Bourilkov 2016
The production of high invariant mass opposite sign lepton pairs in proton-proton collisions at the LHC is dominated by the Drell-Yan process. In addition to this photon or Z exchange mediated mechanism, gamma-gamma collisions, where photons radiated by the incoming protons collide, can produce lepton pairs. This is an important additional source of background for high mass resonant (like Z) or non-resonant (like contact interactions) searches. In this paper detailed calculations of the Drell-Yan and photon-induced cross sections in the typical acceptance of a multi-purpose LHC detector at center of mass energy 13 TeV are presented. The hint for a diphoton excess at a mass around 750 GeV, reported by the ATLAS and CMS experiments from the analysis of the 2015 data at 13 TeV, raises the possibility that such an excess could be produced through gamma-gamma collisions. A good theoretical understanding and measurements in the dilepton channels at these energies can help to elucidate this production hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا