ترغب بنشر مسار تعليمي؟ اضغط هنا

CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent extra assumptions, and it is an open question if they hold for familiar statistical-physics CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely from the Euclidean unitary CFT axioms, without using extra assumptions. We establish all Wightman axioms (temperedness, spectral property, local commutativity, clustering), Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian OPE. This is done constructively, by analytically continuing the 4-point functions using the s-channel OPE expansion in the radial cross-ratios $rho, bar{rho}$. We prove a key fact that $|rho|, |bar{rho}| < 1$ inside the forward tube, and set bounds on how fast $|rho|, |bar{rho}|$ may tend to 1 when approaching the Minkowski space. We also provide a guide to the axiomatic QFT literature for the modern CFT audience. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic result of Mack about the distributional OPE convergence. Some of the classic arguments turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions (Mack) or unverifiable Euclidean assumptions (OS theorem).
We introduce the software blocks_3d for computing four-point conformal blocks of operators with arbitrary Lorentz representations in 3d CFTs. It uses Zamolodchikov-like recursion relations to numerically compute derivatives of blocks around a crossin g-symmetric configuration. It is implemented as a heavily optimized, multithreaded, C++ application. We give performance benchmarks for correlators containing scalars, fermions, and stress tensors. As an example application, we recompute bootstrap bounds on four-point functions of fermions and study whether a previously observed sharp jump can be explained using the fake primary effect. We conclude that the fake primary effect cannot fully explain the jump and the possible existence of a dead-end CFT near the jump merits further study.
We study a product of null-integrated local operators $mathcal{O}_1$ and $mathcal{O}_2$ on the same null plane in a CFT. Such null-integrated operators transform like primaries in a fictitious $d-2$ dimensional CFT in the directions transverse to the null integrals. We give a complete description of the OPE in these transverse directions. The terms with low transverse spin are light-ray operators with spin $J_1+J_2-1$. The terms with higher transverse spin are primary descendants of light-ray operators with higher spins $J_1+J_2-1+n$, constructed using special conformally-invariant differential operators that appear precisely in the kinematics of the light-ray OPE. As an example, the OPE between average null energy operators contains light-ray operators with spin $3$ (as described by Hofman and Maldacena), but also novel terms with spin $5,7,9,$ etc.. These new terms are important for describing energy two-point correlators in non-rotationally-symmetric states, and for computing multi-point energy correlators. We check our formulas in a non-rotationally-symmetric energy correlator in $mathcal{N}=4$ SYM, finding perfect agreement.
We show that the four-point functions in conformal field theory are defined as distributions on the boundary of the region of convergence of the conformal block expansion. The conformal block expansion converges in the sense of distributions on this boundary, i.e. it can be integrated term by term against appropriate test functions. This can be interpreted as a giving a new class of functionals that satisfy the swapping property when applied to the crossing equation, and we comment on the relation of our construction to other types of functionals. Our language is useful in all considerations involving the boundary of the region of convergence, e.g. for deriving the dispersion relations. We establish our results by elementary methods, relying only on crossing symmetry and the standard convergence properties of the conformal block expansion. This is the first in a series of papers on distributional properties of correlation functions in conformal field theory.
We derive a nonperturbative, convergent operator product expansion (OPE) for null-integrated operators on the same null plane in a CFT. The objects appearing in the expansion are light-ray operators, whose matrix elements can be computed by the gener alized Lorentzian inversion formula. For example, a product of average null energy (ANEC) operators has an expansion in the light-ray operators that appear in the stress-tensor OPE. An important application is to collider event shapes. The light-ray OPE gives a nonperturbative expansion for event shapes in special functions that we call celestial blocks. As an example, we apply the celestial block expansion to energy-energy correlators in N=4 Super Yang-Mills theory. Using known OPE data, we find perfect agreement with previous results both at weak and strong coupling, and make new predictions at weak coupling through 4 loops (NNNLO).
We study propagation of a probe particle through a series of closely situated gravitational shocks. We argue that in any UV-complete theory of gravity the result does not depend on the shock ordering - in other words, coincident gravitational shocks commute. Shock commutativity leads to nontrivial constraints on low-energy effective theories. In particular, it excludes non-minimal gravitational couplings unless extra degrees of freedom are judiciously added. In flat space, these constraints are encoded in the vanishing of a certain superconvergence sum rule. In AdS, shock commutativity becomes the statement that average null energy (ANEC) operators commute in the dual CFT. We prove commutativity of ANEC operators in any unitary CFT and establish sufficient conditions for commutativity of more general light-ray operators. Superconvergence sum rules on CFT data can be obtained by inserting complete sets of states between light-ray operators. In a planar 4d CFT, these sum rules express (a-c)/c in terms of the OPE data of single-trace operators.
We apply numerical conformal bootstrap techniques to the four-point function of a Weyl spinor in 4d non-supersymmetric CFTs. We find universal bounds on operator dimensions and OPE coefficients, including bounds on operators in mixed symmetry represe ntations of the Lorentz group, which were inaccessible in previous bootstrap studies. We find discontinuities in some of the bounds on operator dimensions, and we show that they arise due to a generic yet previously unobserved fake primary effect, which is related to the existence of poles in conformal blocks. We show that this effect is also responsible for similar discontinuities found in four-fermion bootstrap in 3d, as well as in the mixed-correlator analysis of the 3d Ising CFT. As an important byproduct of our work, we develop a practical technology for numerical approximation of general 4d conformal blocks.
We review some aspects of harmonic analysis for the Euclidean conformal group, including conformally-invariant pairings, the Plancherel measure, and the shadow transform. We introduce two efficient methods for computing these quantities: one based on weight-shifting operators, and another based on Fourier space. As an application, we give a general formula for OPE coefficients in Mean Field Theory (MFT) for arbitrary spinning operators. We apply this formula to several examples, including MFT for fermions and seed operators in 4d, and MFT for currents and stress-tensors in 3d.
210 - Hyungrok Kim , Petr Kravchuk , 2015
We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-poin t function in any dimension in the limit of large scaling dimensions $Delta_0$ of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite $Delta_0$ as well as for large $Delta_0$. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا