ترغب بنشر مسار تعليمي؟ اضغط هنا

The light-ray OPE and conformal colliders

94   0   0.0 ( 0 )
 نشر من قبل Petr Kravchuk
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a nonperturbative, convergent operator product expansion (OPE) for null-integrated operators on the same null plane in a CFT. The objects appearing in the expansion are light-ray operators, whose matrix elements can be computed by the generalized Lorentzian inversion formula. For example, a product of average null energy (ANEC) operators has an expansion in the light-ray operators that appear in the stress-tensor OPE. An important application is to collider event shapes. The light-ray OPE gives a nonperturbative expansion for event shapes in special functions that we call celestial blocks. As an example, we apply the celestial block expansion to energy-energy correlators in N=4 Super Yang-Mills theory. Using known OPE data, we find perfect agreement with previous results both at weak and strong coupling, and make new predictions at weak coupling through 4 loops (NNNLO).



قيم البحث

اقرأ أيضاً

We study a product of null-integrated local operators $mathcal{O}_1$ and $mathcal{O}_2$ on the same null plane in a CFT. Such null-integrated operators transform like primaries in a fictitious $d-2$ dimensional CFT in the directions transverse to the null integrals. We give a complete description of the OPE in these transverse directions. The terms with low transverse spin are light-ray operators with spin $J_1+J_2-1$. The terms with higher transverse spin are primary descendants of light-ray operators with higher spins $J_1+J_2-1+n$, constructed using special conformally-invariant differential operators that appear precisely in the kinematics of the light-ray OPE. As an example, the OPE between average null energy operators contains light-ray operators with spin $3$ (as described by Hofman and Maldacena), but also novel terms with spin $5,7,9,$ etc.. These new terms are important for describing energy two-point correlators in non-rotationally-symmetric states, and for computing multi-point energy correlators. We check our formulas in a non-rotationally-symmetric energy correlator in $mathcal{N}=4$ SYM, finding perfect agreement.
We study the transverse spin structure of the squeezed limit of the three-point energy correlator, $langle mathcal{E}(vec n_1) mathcal{E}(vec n_2) mathcal{E}(vec n_3) rangle$. To describe its all orders perturbative behavior, we develop the light-ray operator product expansion (OPE) in QCD. At leading twist the iterated OPE of $mathcal{E}(vec n_i)$ operators closes onto light-ray operators $mathbb{O}^{[J]}(vec n)$ with spin $J$, and transverse spin $j=0,2$. We compute the $mathcal{E}(vec n_1) mathcal{E}(vec n_2)$, $mathcal{E}(vec n_1) mathbb{O}^{[J]}(vec n_2) $ and $mathbb{O}^{[J_1]}(vec n_1) mathbb{O}^{[J_2]}(vec n_2) $ OPEs as analytic functions of $J$, which allows for the description of arbitrary squeezed limits of $N$-point correlators in QCD. We use these results with $J=3$ to reproduce the perturbative expansion in the squeezed limit of the three-point correlator, as well as to resum the leading twist singular structure for both quark and gluon jets, including transverse spin contributions, as required for phenomenological applications. Finally, we briefly comment on the transverse spin structure at higher twists, and show that to all orders in the twist expansion the highest transverse spin contributions are universal between quark and gluon jets, and are descendants of the leading twist transverse spin-2 operator, allowing their resummation into a simple two-dimensional Euclidean conformal block. Due to the general applicability of our results to arbitrary correlation functions of energy flow operators, we anticipate that they can be widely applied to improving our understanding of jet substructure at the LHC.
We set up a scattering experiment of matter against an impurity which separates two generic one-dimensional critical quantum systems. We compute the flux of reflected and transmitted energy, thus defining a precise measure of the transparency of the interface between the related two-dimensional conformal field theories. If the largest symmetry algebra is Virasoro, we find that the reflection and transmission coefficients are independent of the details of the initial state, and are fixed in terms of the central charges and of the two-point function of the displacement operator. The situation is more elaborate when extended symmetries are present. Positivity of the total energy flux at infinity imposes bounds on the coefficient of the two-point function of the displacement operator, which controls the free-energy cost of a small deformation of the interface. Finally, we study out-of-equilibrium steady states of a critical system connecting two reservoirs at different temperatures. In the absence of extended symmetries, our result implies that the energy flux across an impurity is proportional to the difference of the squared temperatures and controlled by the reflection coefficient.
158 - Marc Gillioz 2019
In conformal field theory in Minkowski momentum space, the 3-point correlation functions of local operators are completely fixed by symmetry. Using Ward identities together with the existence of a Lorentzian operator product expansion (OPE), we show that the Wightman function of three scalar operators is a double hypergeometric series of the Appell $F_4$ type. We extend this simple closed-form expression to the case of two scalar operators and one traceless symmetric tensor with arbitrary spin. Time-ordered and partially-time-ordered products are constructed in a similar fashion and their relation with the Wightman function is discussed.
Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic radial quantization Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا