ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributions in CFT I. Cross-Ratio Space

116   0   0.0 ( 0 )
 نشر من قبل Petr Kravchuk
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the four-point functions in conformal field theory are defined as distributions on the boundary of the region of convergence of the conformal block expansion. The conformal block expansion converges in the sense of distributions on this boundary, i.e. it can be integrated term by term against appropriate test functions. This can be interpreted as a giving a new class of functionals that satisfy the swapping property when applied to the crossing equation, and we comment on the relation of our construction to other types of functionals. Our language is useful in all considerations involving the boundary of the region of convergence, e.g. for deriving the dispersion relations. We establish our results by elementary methods, relying only on crossing symmetry and the standard convergence properties of the conformal block expansion. This is the first in a series of papers on distributional properties of correlation functions in conformal field theory.



قيم البحث

اقرأ أيضاً

CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent extra assumptions, and it is an open question if they hold for familiar statistical-physics CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely from the Euclidean unitary CFT axioms, without using extra assumptions. We establish all Wightman axioms (temperedness, spectral property, local commutativity, clustering), Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian OPE. This is done constructively, by analytically continuing the 4-point functions using the s-channel OPE expansion in the radial cross-ratios $rho, bar{rho}$. We prove a key fact that $|rho|, |bar{rho}| < 1$ inside the forward tube, and set bounds on how fast $|rho|, |bar{rho}|$ may tend to 1 when approaching the Minkowski space. We also provide a guide to the axiomatic QFT literature for the modern CFT audience. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic result of Mack about the distributional OPE convergence. Some of the classic arguments turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions (Mack) or unverifiable Euclidean assumptions (OS theorem).
In this paper we study in detail the deformations introduced in [1] of the integrable structures of the AdS$_{2,3}$ integrable models. We do this by embedding the corresponding scattering matrices into the most general solutions of the Yang-Baxter eq uation. We show that there are several non-trivial embeddings and corresponding deformations. We work out crossing symmetry for these models and study their symmetry algebras and representations. In particular, we identify a new elliptic deformation of the $rm AdS_3 times S^3 times M^4$ string sigma model.
As we have shown in the previous work, using the formalism of matrix and eigenvalue models, to a given classical algebraic curve one can associate an infinite family of quantum curves, which are in one-to-one correspondence with singular vectors of a certain (e.g. Virasoro or super-Virasoro) underlying algebra. In this paper we reformulate this problem in the language of conformal field theory. Such a reformulation has several advantages: it leads to the identification of quantum curves more efficiently, it proves in full generality that they indeed have the structure of singular vectors, it enables identification of corresponding eigenvalue models. Moreover, this approach can be easily generalized to other underlying algebras. To illustrate these statements we apply the conformal field theory formalism to the case of the Ramond version of the super-Virasoro algebra. We derive two classes of corresponding Ramond super-eigenvalue models, construct Ramond super-quantum curves that have the structure of relevant singular vectors, and identify underlying Ramond super-spectral curves. We also analyze Ramond multi-Penner models and show that they lead to supersymmetric generalizations of BPZ equations.
We propose a $D$-dimensional generalization of $4D$ bi-scalar conformal quantum field theory recently introduced by G{u}rdogan and one of the authors as a strong-twist double scaling limit of $gamma$-deformed $mathcal{N}=4$ SYM theory. Similarly to t he $4D$ case, this D-dimensional CFT is also dominated by fishnet Feynman graphs and is integrable in the planar limit. The dynamics of these graphs is described by the integrable conformal $SO(D+1,1)$ spin chain. In $2D$ it is the analogue of L. Lipatovs $SL(2,mathbb{C})$ spin chain for the Regge limit of $QCD$, but with the spins $s=1/4$ instead of $s=0$. Generalizing recent $4D$ results of Grabner, Gromov, Korchemsky and one of the authors to any $D$ we compute exactly, at any coupling, a four point correlation function, dominated by the simplest fishnet graphs of cylindric topology, and extract from it exact dimensions of R-charge 2 operators with any spin and some of their OPE structure constants.
162 - Stefan Hollands 2019
We introduce a new approach to find the Tomita-Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo-Martin-Schwinge r (KMS) condition. These features can be used to transform the problem to a Riemann-Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا