ترغب بنشر مسار تعليمي؟ اضغط هنا

The structure and dynamics of the outer solar atmosphere are reviewed with emphasis on the role played by the magnetic field. Contemporary observations that focus on high resolution imaging over a range of temperatures, as well as UV, EUV and hard X- ray spectroscopy, demonstrate the presence of a vast range of temporal and spatial scales, mass motions, and particle energies present. By focussing on recent developments in the chromosphere, corona and solar wind, it is shown that small scale processes, in particular magnetic reconnection, play a central role in determining the large-scale structure and properties of all regions. This coupling of scales is central to understanding the atmosphere, yet poses formidable challenges for theoretical models.
We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling (Reale and Landi, 2012) is due to the inability of a loop to sustain radiative / enthalpy cooling below a critical temperature, which can be > 1 MK in flares, 0.5 - 1 MK in active regions and 0.1 MK in long tenuous loops. Catastrophic cooling is characterised by a rapid fall in coronal temperature while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect limits very considerably the lifetime of coronal plasmas below the critical temperature.
The effect of the numerical spatial resolution in models of the solar corona and corona / chromosphere interface is examined for impulsive heating over a range of magnitudes using one dimensional hydrodynamic simulations. It is demonstrated that the principle effect of inadequate resolution is on the coronal density. An underresolved loop typically has a peak density of at least a factor of two lower than a resolved loop subject to the same heating, with larger discrepencies in the decay phase. The temperature for under-resolved loops is also lower indicating that lack of resolution does not bottle up the heat flux in the corona. Energy is conserved in the models to under 1% in all cases, indicating that this is not responsible for the low density. Instead, we argue that in under-resolved loops the heat flux jumps across the transition region to the dense chromosphere from which it is radiated rather than heating and ablating transition region plasma. This emphasises the point that the interaction between corona and chromosphere occurs only through the medium of the transition region. Implications for three dimensional magnetohydrodynamic coronal models are discussed.
This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model Enthalpy-based Thermal Evolution of Loops (EBTEL) proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating, especially impulsive hea ting events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function, (b) extensive parameter surveys and (c) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا