ﻻ يوجد ملخص باللغة العربية
The structure and dynamics of the outer solar atmosphere are reviewed with emphasis on the role played by the magnetic field. Contemporary observations that focus on high resolution imaging over a range of temperatures, as well as UV, EUV and hard X-ray spectroscopy, demonstrate the presence of a vast range of temporal and spatial scales, mass motions, and particle energies present. By focussing on recent developments in the chromosphere, corona and solar wind, it is shown that small scale processes, in particular magnetic reconnection, play a central role in determining the large-scale structure and properties of all regions. This coupling of scales is central to understanding the atmosphere, yet poses formidable challenges for theoretical models.
The magnetic activity of the Sun directly impacts the Earth and human life. Likewise, other stars will have an impact on the habitability of planets orbiting these host stars. The lack of information on the magnetic field in the higher atmospheric la
The presence of turbulent phenomena in the outer solar atmosphere is a given. However, because we are reduced to remotely sensing the atmosphere of a star with instruments of limited spatial and/or spectral resolution, we can only infer the physical
Spectroscopic observations at extreme and far ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of
In this work, a state-of-the-art vortex detection method, Instantaneous Vorticity Deviation, is applied to locate three-dimensional vortex tube boundaries in numerical simulations of solar photospheric magnetoconvection performed by the MURaM code. W
This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsib