ترغب بنشر مسار تعليمي؟ اضغط هنا

The QCD/HQET matching coefficient for the heavy-quark field is calculated up to four loops. It must be finite; this requirement produces analytical results for some terms in the four-loop on-shell heavy-quark field renormalization constant which were previously only known numerically. The effect of a non-zero lighter-flavor mass is calculated up to three loops. A class of on-shell integrals with two masses is analyzed in detail. By specifying our result to QED, we obtain the relation between the electron field and the Bloch--Nordsieck field with four-loop accuracy.
Elucidating the phase diagram of lattice gauge theories with fermionic matter in 2+1 dimensions has become a problem of considerable interest in recent years, motivated by physical problems ranging from chiral symmetry breaking in high-energy physics to fractionalized phases of strongly correlated materials in condensed matter physics. For a sufficiently large number $N_f$ of flavors of four-component Dirac fermions, recent sign-problem-free quantum Monte Carlo studies of lattice quantum electrodynamics (QED$_3$) on the square lattice have found evidence for a continuous quantum phase transition between a power-law correlated conformal QED$_3$ phase and a confining valence-bond-solid phase with spontaneously broken point-group symmetries. The critical continuum theory of this transition was shown to be the $O(2)$ QED$_3$-Gross-Neveu model, equivalent to the gauged Nambu-Jona-Lasinio model, and critical exponents were computed to first order in the large-$N_f$ expansion and the $epsilon$ expansion. We extend these studies by computing critical exponents to second order in the large-$N_f$ expansion and to four-loop order in the $epsilon$ expansion below four spacetime dimensions. In the latter context, we also explicitly demonstrate that the discrete $mathbb{Z}_4$ symmetry of the valence-bond-solid order parameter is dynamically enlarged to a continuous $O(2)$ symmetry at criticality for all values of $N_f$.
Discretization effects of lattice QCD are described by Symanziks effective theory when the lattice spacing, $a$, is small. Asymptotic freedom predicts that the leading asymptotic behavior is $sim a^n [bar g^2(a^{-1})]^{hatgamma_1} sim a^n left[frac {1}{-log(aLambda)}right]^{hatgamma_1}$. For spectral quantities, $n=d$ is given in terms of the (lowest) canonical dimension, $d+4$, of the operators in the local effective Lagrangian and $hatgamma_1$ is proportional to the leading eigenvalue of their one-loop anomalous dimension matrix $gamma^{(0)}$. We determine $gamma^{(0)}$ for Yang-Mills theory ($n=2$) and discuss consequences in general and for perturbatively improved short distance observables. With the help of results from the literature, we also discuss the $n=1$ case of Wilson fermions with perturbative O$(a)$ improvement and the discretization effects specific to the flavor currents. In all cases known so far, the discretization effects are found to disappear faster than the naive $sim a^n$ and the log-corrections are a rather weak modification -- in contrast to the two-dimensional O(3) sigma model.
We analyse the leading logarithmic corrections to the $a^2$ scaling of lattice artefacts in QCD, following the seminal work of Balog, Niedermayer and Weisz in the O(n) non-linear sigma model. Restricting our attention to contributions from the action , the leading logarithmic corrections can be determined by the anomalous dimensions of a minimal on-shell basis of mass-dimension 6 operators. We present results for the SU(N) pure gauge theory. In this theory the logarithmic corrections reduce the cutoff effects. These computations are the first step towards a study of full lattice QCD at O($a^2$), which is in progress.
The abelian Higgs model is the textbook example for the superconducting transition and the Anderson-Higgs mechanism, and has become pivotal in the description of deconfined quantum criticality. We study the abelian Higgs model with $n$ complex scalar fields at unprecedented four-loop order in the $4-epsilon$ expansion and find that the annihilation of the critical and bicritical points occurs at a critical number of $n_c approx 182.95left(1 - 1.752epsilon + 0.798 epsilon^2 + 0.362epsilon^3right) + mathcal{O}left(epsilon^4right) onumber$. Consequently, below $n_c$, the transition turns from second to first order. Resummation of the series to extract the result in three-dimensions provides strong evidence for a critical $n_c(d=3)$ which is significantly below the leading-order value, but the estimates for $n_c$ are widely spread. Conjecturing the topology of the renormalization group flow between two and four dimensions, we obtain a smooth interpolation function for $n_c(d)$ and find $n_c(3)approx 12.2pm 3.9$ as our best estimate in three dimensions. Finally, we discuss Miransky scaling occurring below $n_c$ and comment on implications for weakly first-order behavior of deconfined quantum transitions. We predict an emergent hierarchy of length scales between deconfined quantum transitions corresponding to different $n$.
The algebraic spin liquid is a long-sought-after phase of matter characterized by the absence of quasiparticle excitations, a low-energy description in terms of emergent Dirac fermions and gauge fields interacting according to (2+1)D quantum electrod ynamics (QED$_3$), and power-law correlations with universal exponents. The prototypical algebraic spin liquid is the Affleck-Marston $pi$-flux phase, originally proposed as a possible ground state of the spin-1/2 Heisenberg model on the 2D square lattice. While the latter model is now known to order antiferromagnetically at zero temperature, recent sign-problem-free quantum Monte Carlo simulations of spin-1/2 fermions coupled to a compact U(1) gauge field on the square lattice have shown that quantum fluctuations can destroy Neel order and drive a direct quantum phase transition to the $pi$-flux phase. We show this transition is in the universality class of the chiral Heisenberg QED$_3$-Gross-Neveu-Yukawa model with a single SU(2) doublet of four-component Dirac fermions (i.e., $N_f=1$), pointing out important differences with the corresponding putative transition on the kagome lattice. Using an $epsilon$ expansion below four spacetime dimensions to four-loop order, and a large-$N_f$ expansion up to second order, we show the transition is continuous and compute various thermodynamic and susceptibility critical exponents at this transition, setting the stage for future numerical determinations of these quantities. As a byproduct of our analysis, we also obtain charge-density-wave and valence-bond-solid susceptibility exponents at the semimetal-Neel transition for interacting fermions on the honeycomb lattice.
We study the universal critical properties of the QED$_3$-Gross-Neveu-Yukawa model with $N$ flavors of four-component Dirac fermions coupled to a real scalar order parameter at four-loop order in the $epsilon$ expansion below four dimensions. For $N= 1$, the model is conjectured to be infrared dual to the $SU(2)$-symmetric noncompact $mathbb{C}$P$^1$ model, which describes the deconfined quantum critical point of the Neel-valence-bond-solid transition of spin-1/2 quantum antiferromagnets on the two-dimensional square lattice. For $N=2$, the model describes a quantum phase transition between an algebraic spin liquid and a chiral spin liquid in the spin-1/2 kagome antiferromagnet. For general $N$ we determine the order parameter anomalous dimension, the correlation length exponent, the stability critical exponent, as well as the scaling dimensions of $SU(N)$ singlet and adjoint fermion mass bilinears at the critical point. We use Pade approximants to obtain estimates of critical properties in 2+1 dimensions.
We present the color planar and complete light quark QCD contributions to the three loop heavy quark form factors in the case of vector, axial-vector, scalar and pseudo-scalar currents. We evaluate the master integrals applying a new method based on differential equations for general bases, which is applicable for any first order factorizing systems. The analytic results are expressed in terms of harmonic polylogarithms and real-valued cyclotomic harmonic polylogarithms.
We compute the on-shell wave function renormalization constant to four-loop order in QCD and present numerical results for all coefficients of the SU$(N_c)$ colour factors. We extract the four-loop HQET anomalous dimension of the heavy quark field an d also discuss the application of our result to QED.
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in $4-epsilon$ dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order $mathca l{O}(epsilon^4)$. Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with $N=1/4$ and $N=1/2$ fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا