ﻻ يوجد ملخص باللغة العربية
We analyse the leading logarithmic corrections to the $a^2$ scaling of lattice artefacts in QCD, following the seminal work of Balog, Niedermayer and Weisz in the O(n) non-linear sigma model. Restricting our attention to contributions from the action, the leading logarithmic corrections can be determined by the anomalous dimensions of a minimal on-shell basis of mass-dimension 6 operators. We present results for the SU(N) pure gauge theory. In this theory the logarithmic corrections reduce the cutoff effects. These computations are the first step towards a study of full lattice QCD at O($a^2$), which is in progress.
We calculate the scattering cross section between two $0^{++}$ glueballs in $SU(2)$ Yang-Mills theory on lattice at $beta = 2.1, 2.2, 2.3, 2.4$, and 2.5 using the indirect (HAL QCD) method. We employ the cluster-decomposition error reduction techniqu
By using the method of center projection the center vortex part of the gauge field is isolated and its propagator is evaluated in the center Landau gauge, which minimizes the open 3-dimensional Dirac volumes of non-trivial center links bounded by the
We perform simulations of an effective theory of SU(2) Wilson lines in three dimensions. Our action includes a kinetic term, the one-loop perturbative potential for the Wilson line, a non-perturbative fuzzy-bag contribution and spatial gauge fields.
We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in the Coulomb gauge. We use lattices up to a size of 48^4 and three values of the inverse coupling, beta=5.8, 6.0 and 6.2. While finite-volume effec
To set the stage, I discuss the $beta$-function of the massless O(N) model in three dimensions, which can be calculated exactly in the large N limit. Then, I consider SU(N) Yang-Mills theory in 2+1 space-time dimensions. Relating the $beta$-function