ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive three loop form factors in the planar limit

71   0   0.0 ( 0 )
 نشر من قبل Narayan Rana
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the color planar and complete light quark QCD contributions to the three loop heavy quark form factors in the case of vector, axial-vector, scalar and pseudo-scalar currents. We evaluate the master integrals applying a new method based on differential equations for general bases, which is applicable for any first order factorizing systems. The analytic results are expressed in terms of harmonic polylogarithms and real-valued cyclotomic harmonic polylogarithms.



قيم البحث

اقرأ أيضاً

We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul ts for the Laurent expansion of conventional integrals in the parameter of dimensional regularization through to terms of weight eight.
We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors $F_1$ and $F_2$ involving a closed loop of massless fermions. This subset is gauge invariant and contains both planar and non-planar contributions. We perfo rm the reduction using FIRE and compute the master integrals with the help of differential equations. Our analytic results can be expressed in terms of Goncharov polylogarithms. We provide analytic results for all master integrals which are not present in the large-$N_c$ calculation considered in Refs. [1,2].
We evaluate, exactly in d, the master integrals contributing to massless three-loop QCD form factors. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition im plemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm. Using our results for the master integrals we obtain analytical expressions for two missing constants in the ep-expansion of the two most complicated master integrals and present the form factors in a completely analytic form.
A summary of the calculation of the color-planar and complete light quark contributions to the massive three-loop form factors is presented. Here a novel calculation method for the Feynman integrals is used, solving general uni-variate first order fa ctorizable systems of differential equations. We also present predictions for the asymptotic structure of these form factors.
113 - R.N. Lee , V.A. Smirnov 2010
We evaluate analytically higher terms of the epsilon-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g-2 in QED up to the transc endentality weight typical to four-loop calculations, i.e. eight and seven, respectively. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا