ترغب بنشر مسار تعليمي؟ اضغط هنا

Value iteration is a powerful yet inefficient algorithm for Markov decision processes (MDPs) because it puts the majority of its effort into backing up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many approaches have been proposed. Among them, ILAO* and variants of RTDP are state-of-the-art ones. These methods use reachability analysis and heuristic search to avoid some unnecessary backups. However, none of these approaches build the graphical structure of the state transitions in a pre-processing step or use the structural information to systematically decompose a problem, whereby generating an intelligent backup sequence of the state space. In this paper, we present two optimal MDP algorithms. The first algorithm, topological value iteration (TVI), detects the structure of MDPs and backs up states based on topological sequences. It (1) divides an MDP into strongly-connected components (SCCs), and (2) solves these components sequentially. TVI outperforms VI and other state-of-the-art algorithms vastly when an MDP has multiple, close-to-equal-sized SCCs. The second algorithm, focused topological value iteration (FTVI), is an extension of TVI. FTVI restricts its attention to connected components that are relevant for solving the MDP. Specifically, it uses a small amount of heuristic search to eliminate provably sub-optimal actions; this pruning allows FTVI to find smaller connected components, thus running faster. We demonstrate that FTVI outperforms TVI by an order of magnitude, averaged across several domains. Surprisingly, FTVI also significantly outperforms popular heuristically-informed MDP algorithms such as ILAO*, LRTDP, BRTDP and Bayesian-RTDP in many domains, sometimes by as much as two orders of magnitude. Finally, we characterize the type of domains where FTVI excels --- suggesting a way to an informed choice of solver.
Consider a measurable space with a finite vector measure. This measure defines a mapping of the $sigma$-field into a Euclidean space. According to Lyapunovs convexity theorem, the range of this mapping is compact and, if the measure is atomless, this range is convex. Similar ranges are also defined for measurable subsets of the space. We show that the union of the ranges of all subsets having the same given vector measure is also compact and, if the measure is atomless, it is convex. We further provide a geometrically constructed convex compactum in the Euclidean space that contains this union. The equality of these two sets, that holds for two-dimensional measures, can be violated in higher dimensions.
Consider a measurable space with an atomless finite vector measure. This measure defines a mapping of the $sigma$-field into an Euclidean space. According to the Lyapunov convexity theorem, the range of this mapping is a convex compactum. Similar ran ges are also defined for measurable subsets of the space. Two subsets with the same vector measure may have different ranges. We investigate the question whether, among all the subsets having the same given vector measure, there always exists a set with the maximal range of the vector measure. The answer to this question is positive for two-dimensional vector measures and negative for higher dimensions. We use the existence of maximal ranges to strengthen the Dvoretzky-Wald-Wolfowitz purification theorem for the case of two measures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا