ترغب بنشر مسار تعليمي؟ اضغط هنا

On Maximal Ranges of Vector Measures for Subsets and Purification of Transition Probabilities

82   0   0.0 ( 0 )
 نشر من قبل Peng Dai
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider a measurable space with an atomless finite vector measure. This measure defines a mapping of the $sigma$-field into an Euclidean space. According to the Lyapunov convexity theorem, the range of this mapping is a convex compactum. Similar ranges are also defined for measurable subsets of the space. Two subsets with the same vector measure may have different ranges. We investigate the question whether, among all the subsets having the same given vector measure, there always exists a set with the maximal range of the vector measure. The answer to this question is positive for two-dimensional vector measures and negative for higher dimensions. We use the existence of maximal ranges to strengthen the Dvoretzky-Wald-Wolfowitz purification theorem for the case of two measures.

قيم البحث

اقرأ أيضاً

66 - Rukuang Huang 2021
The classical Cramer-Lundberg risk process models the ruin probability of an insurance company experiencing an incoming cash flow - the premium income, and an outgoing cash flow - the claims. From a systems viewpoint, the web of insurance agents and risk objects can be represented by a bipartite network. In such a bipartite network setting, it has been shown that joint ruin of a group of agents may be avoided even if individual agents would experience ruin in the classical Cramer-Lundberg model. This paper describes and examines a phase transition phenomenon for these ruin probabilities.
This paper introduces the concept of random context representations for the transition probabilities of a finite-alphabet stochastic process. Processes with these representations generalize context tree processes (a.k.a. variable length Markov chains ), and are proven to coincide with processes whose transition probabilities are almost surely continuous functions of the (infinite) past. This is similar to a classical result by Kalikow about continuous transition probabilities. Existence and uniqueness of a minimal random context representation are proven, and an estimator of the transition probabilities based on this representation is shown to have very good pastwise adaptativity properties. In particular, it achieves minimax performance, up to logarithmic factors, for binary renewal processes with bounded $2+gamma$ moments.
62 - Xin Guo 2020
This paper establishes It^os formula along a flow of probability measures associated with gene-ral semimartingales. This generalizes existing results for flow of measures on It^o processes. Our approach is to first prove It^os formula for cylindrical polynomials and then use function approximation and localization techniques for the general case. This general form of It^os formula enables derivation of dynamic programming equations and verification theorems for McKean-Vlasov controls with jump diffusions and for McKean-Vlasov mixed regular-singular control problems. It also allows for generalizing the classical relation between the maximum principle and the dynamic programming principle to the McKean-Vlasov singular control setting, where the adjoint process is expressed in term of the derivative of the value function with respect to probability measures.
We consider random walks on the group of orientation-preserving homeomorphisms of the real line ${mathbb R}$. In particular, the fundamental question of uniqueness of an invariant measure of the generated process is raised. This problem was already s tudied by Choquet and Deny (1960) in the context of random walks generated by translations of the line. Nowadays the answer is quite well understood in general settings of strongly contractive systems. Here we focus on broader class of systems satisfying the conditions: recurrence, contraction and unbounded action. We prove that under these conditions the random process possesses a unique invariant Radon measure on ${mathbb R}$. Our work can be viewed as a subsequent paper of Babillot et al. (1997) and Deroin et al. (2013).
61 - Amine Asselah 2020
We prove that in any finite set of $mathbb Z^d$ with $dge 3$, there is a subset whose capacity and volume are both of the same order as the capacity of the initial set. As an application we obtain estimates on the probability of {it covering uniforml y} a finite set, and characterize some {it folding} events, under optimal hypotheses. For instance, knowing that a region of space has an {it atypically high occupation density} by some random walk, we show that this random region is most likely ball-like
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا