ﻻ يوجد ملخص باللغة العربية
Consider a measurable space with a finite vector measure. This measure defines a mapping of the $sigma$-field into a Euclidean space. According to Lyapunovs convexity theorem, the range of this mapping is compact and, if the measure is atomless, this range is convex. Similar ranges are also defined for measurable subsets of the space. We show that the union of the ranges of all subsets having the same given vector measure is also compact and, if the measure is atomless, it is convex. We further provide a geometrically constructed convex compactum in the Euclidean space that contains this union. The equality of these two sets, that holds for two-dimensional measures, can be violated in higher dimensions.
This work is devoted to a vast extension of Sanovs theorem, in Laplace principle form, based on alternatives to the classical convex dual pair of relative entropy and cumulant generating functional. The abstract results give rise to a number of proba
In 1940, Luis Santalo proved a Helly-type theorem for line transversals to boxes in R^d. An analysis of his proof reveals a convexity structure for ascending lines in R^d that is isomorphic to the ordinary notion of convexity in a convex subset of R^
We show that every $mathbb{R}^d$-valued Sobolev path with regularity $alpha$ and integrability $p$ can be lifted to a Sobolev rough path provided $alpha < 1/p<1/3$. The novelty of our approach is its use of ideas underlying Hairers reconstruction the
In 1926, H. Busch formulated a theorem for one single charged particle moving along a region with a longitudinal magnetic field [H. Busch, Berechnung der Bahn von Kathodenstrahlen in axial symmetrischen electromagnetischen Felde, Z. Phys. 81 (5) p. 9
A classical theorem of Herglotz states that a function $nmapsto r(n)$ from $mathbb Z$ into $mathbb C^{stimes s}$ is positive definite if and only there exists a $mathbb C^{stimes s}$-valued positive measure $dmu$ on $[0,2pi]$ such that $r(n)=int_0^{2