ترغب بنشر مسار تعليمي؟ اضغط هنا

Closed-topology magnetic domains are usually observed in thin films and in an applied magnetic field. Here we report the observation of rectangular cross-section tubular ferromagnetic domains in thick single crystals of CeAgSb2 in zero applied field. Relatively low exchange energy, small net magnetic moment, and anisotropic in-plane crystal electric fields lower the domain wall energy and allow for the formation of the closed-topology patterns. Upon cycling the magnetic field, the domain structure irreversibly transforms into a dendritic open-topology pattern. This transition between closed and open topologies results in a topological magnetic hysteresis - the actual hysteresis in magnetization, not due to the imperfections and pinning, but due to the difference in the pattern morphology. Similar physics was suggested before in pure type-I superconductors and is believed to be a generic feature of other nonlinear multi-phase systems in the clean limit.
In the recent publication, Phys. Rev. B 102, 144420 (2020), Cabrera-Baez et al. present a study of the effects of Cd-substitution for Zn in the ferromagnetic compound GdFe2Zn20. As part of this paper, they claim that for GdFe2Zn18.6Cd1.4 the effectiv e moment of Gd is reduced by 25% and the saturated moment of Gd is reduced by over 40%. We regrew representative members of the GdFe2Zn(20-x)Cdx series and did not find any such reductions. In addition, we measured several crystals from the growth batch that was used by Cabrera-Baez et al. and did not see such reductions. Although there is a modest increase in TC with Cd substitution, there is no significant change in the Gd effective moment or the saturated moment associated with the low temperature ferromagnetic state.
By performing pressure simulations within density functional theory for the family of iron-based superconductors $Ae{}A$Fe$_4$As$_4$ with $Ae$ = Ca, Sr, Ba and $A$ = K, Rb, Cs we predict in these systems the appearance of two consecutive half-collaps ed tetragonal transitions at pressures $P_{c_1}$ and $P_{c_2}$, which have a different character in terms of their effect on the electronic structure. We find that, similarly to previous studies for CaKFe$_4$As$_4$, spin-vortex magnetic fluctuations on the Fe sublattice play a key role for an accurate structure prediction in these materials at zero pressure. We identify clear trends of critical pressures and discuss the relevance of the collapsed phases in connection to magnetism and superconductivity. Finally, the intriguing cases of EuRbFe$_4$As$_4$ and EuCsFe$_4$As$_4$, where Eu magnetism coexists with superconductivity, are discussed as well in the context of half-collapsed phases.
We report the temperature-pressure-magnetic field phase diagram of the ferromagnetic Kondo-lattice CeTiGe$_3$ determined by means of electrical resistivity measurements. Measurements up to $sim$ 5.8 GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe$_3$ orders ferromagnetically at $T_text{C}$ = 14 K. Application of pressure suppresses $T_text{C}$, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for $p$ $>$ 4.1 GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3 GPa. The critical pressures for the presumed quantum phase transitions are $p_1$ $cong$ 4.1 GPa and $p_2$ $cong$ 5.3 GPa. Above 4.1 GPa, application of magnetic field shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8 T at 5.4 GPa, where the first order antiferromagnetic-ferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.
We determined on the temperature-pressure-magnetic field ($T$-$p$-$H$) phase diagram of the ferromagnet LaCrGe$_3$ from electrical resistivity measurements on single crystals. In ferromagnetic systems, quantum criticality is avoided either by a chang e of the transition order, becoming of the first order at a tricritical point, or by the appearance of modulated magnetic phases. In the first case, the application of a magnetic field reveals a wing-structure phase diagram as seen in itinerant ferromagnets such as ZrZn$_2$ and UGe$_2$. In the second case, no tricritical wings have been observed so far. Our investigation of LaCrGe$_3$ reveals a double-wing structure indicating strong similarities with ZrZn$_2$ and UGe$_2$. But, unlike these, simpler systems, LaCrGe$_3$ is thought to exhibit a modulated magnetic phase under pressure which already precludes it from a pressure-driven paramagnetic-ferromagnetic quantum phase transition in zero field. As a result, the $T$-$p$-$H$ phase diagram of LaCrGe$_3$ shows both the wing structure as well as the appearance of new magnetic phases, providing the first example of this new possibility for the phase diagram of metallic quantum ferromagnets.
A large swath of strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition m etal based, strongly correlated systems that are revealed by suppressed, fragile magnetism or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.
Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibers. In this paper we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the clean separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this paper we provide examples of the growth of isotopically substituted TbCd$_{6}$ and icosahedral i-$R$Cd quasicrystals, as well as the separation of (i) the closely related Bi$_{2}$Rh$_{3}$S$_{2}$ and Bi$_{2}$Rh$_{3.5}$S$_{2}$ phases and (ii) PrZn$_{11}$ and Pr$_{2}$Zn$_{17}$.
The low temperature, magnetic phase transition in LuFe2Ge2 is thought to be associated with itinerant magnetism. The effects of Y and Sc substitutions on the Lu site, as well as Ru and Co substitutions on the Fe site, on the low temperature magnetic phase transition of LuFe2Ge2 compound have been studied in single crystals via microscopic, thermodynamic and transport measurements. On one hand, Co substitution suppresses the transition below our base temperature of 2 K even at our lowest substitution level. On the other hand, Sc substitution enhances the transition temperature, and Y or Ru substitution suppresses the transition to lower temperature. Phase diagrams for Y, Sc and Ru substitutions have been constructed and the possibility of a unifying, composite diagram is discussed.
We present detailed, low temperature, magnetoresistance and specific heat data of single crystal YbNiSi3 measured in magnetic field applied along the easy magnetic axis, H || b. An initially antiferromagnetic ground state changes into a field-induced metamagnetic phase at ~16 kOe (T -> 0). On further increase of magnetic field, magnetic order is suppressed at ~85 kOe. The functional behaviors of the resistivity and specific heat are discussed in comparison with those of the few other stoichiometric, heavy fermion compounds with established field-induced quantum critical point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا