ﻻ يوجد ملخص باللغة العربية
Closed-topology magnetic domains are usually observed in thin films and in an applied magnetic field. Here we report the observation of rectangular cross-section tubular ferromagnetic domains in thick single crystals of CeAgSb2 in zero applied field. Relatively low exchange energy, small net magnetic moment, and anisotropic in-plane crystal electric fields lower the domain wall energy and allow for the formation of the closed-topology patterns. Upon cycling the magnetic field, the domain structure irreversibly transforms into a dendritic open-topology pattern. This transition between closed and open topologies results in a topological magnetic hysteresis - the actual hysteresis in magnetization, not due to the imperfections and pinning, but due to the difference in the pattern morphology. Similar physics was suggested before in pure type-I superconductors and is believed to be a generic feature of other nonlinear multi-phase systems in the clean limit.
The metallic character of the GeBi2Te4 single crystals is probed using a combination of structural and physical properties measurements, together with density functional theory (DFT) calculations. The structural study shows distorted Ge coordination
A significant number of Kondo-lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In th
Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it was already shown that ferroelectric domain walls can be the source of such artificial coupling. We s
We investigated with XMCD-PEEM magnetic imaging the magnetization reversal processes of Neel caps inside Bloch walls in self-assembled, micron-sized Fe(110) dots with flux-closure magnetic state. In most cases the magnetic-dependent processes are sym
Topological phases of matter have established a new paradigm in physics, bringing quantum phenomena to the macroscopic scale and hosting exotic emergent quasiparticles. In this thesis, I theoretically and experimentally demonstrate with my collaborat