ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Magnetic Hysteresis in Single Crystals of CeAgSb2 Ferromagnet

86   0   0.0 ( 0 )
 نشر من قبل Ruslan Prozorov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Closed-topology magnetic domains are usually observed in thin films and in an applied magnetic field. Here we report the observation of rectangular cross-section tubular ferromagnetic domains in thick single crystals of CeAgSb2 in zero applied field. Relatively low exchange energy, small net magnetic moment, and anisotropic in-plane crystal electric fields lower the domain wall energy and allow for the formation of the closed-topology patterns. Upon cycling the magnetic field, the domain structure irreversibly transforms into a dendritic open-topology pattern. This transition between closed and open topologies results in a topological magnetic hysteresis - the actual hysteresis in magnetization, not due to the imperfections and pinning, but due to the difference in the pattern morphology. Similar physics was suggested before in pure type-I superconductors and is believed to be a generic feature of other nonlinear multi-phase systems in the clean limit.

قيم البحث

اقرأ أيضاً

The metallic character of the GeBi2Te4 single crystals is probed using a combination of structural and physical properties measurements, together with density functional theory (DFT) calculations. The structural study shows distorted Ge coordination polyhedra, mainly of the Ge octahedra. This has a major impact on the band structure, resulting in bulk metallic behavior of GeBi2Te4, as indicated by DFT calculations. Such calculations place GeBi2Te4 in a class of a few known non-trivial topological metals, and explains why an observed Dirac point lies below the Fermi energy at about -0.12eV. A topological picture of GeBi2Te4 is confirmed by the observation of surface state modulations by scanning tunneling microscopy (STM).
A significant number of Kondo-lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In th e present paper we use inelastic neutron scattering supported by magnetization and specific heat measurements to study the spin dynamics in the hard-axis ferromagnet CeAgSb2. In the zero field state we observed two sharp magnon modes, which are associated with Ce ordering and extended up to $approx 3 meV with a considerable spin gap of 0.6 meV. Application of a magnetic field perpendicular to the moment direction reduces the spectral intensity and suppresses the gap and significantly enhances the low-temperature specific heat at a critical field of Bc ~ 2.8 T via a mean-field-like transition. Above the transition, in the field polarized state, the gap eventually reopens due to the Zeeman effect. We modeled the observed dispersion using linear spin-wave theory (LSWT) taking into account the ground state Gamma 6 doublet and exchange anisotropy. Our model correctly captures the essential features of the spin dynamics including magnetic dispersion, distribution of the spectral intensity as well as the field-induced behavior, although several minor features remain obscure. The observed spectra do not show significant broadening due to the finite lifetime of the quasiparticles. Along with a moderate electronic specific heat coefficient gamma = 46 mJ/mol K2 this indicates that the Kondo coupling is relatively weak and the Ce moments are well localized. Altogether, our results provide profound insight into the spin dynamics of the hard-axis ferromagnet CeAgSb2 and can be used as solid ground for studying magnetic interactions in isostructural compounds including CeAuSb2, which exhibits nematicity and unusual mesoscale magnetic textures.
Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it was already shown that ferroelectric domain walls can be the source of such artificial coupling. We s how here that low temperature dielectric losses can be tuned by a dc magnetic field. Since such losses were previously ascribed to polaron relaxation we suggest this results from the interaction of hopping polarons with the magnetic field. The fact that this losses alteration has no counterpart on the real part of the dielectric permittivity confirms that no interface is to be involved in this purely dynamical effect. The contribution of mobile charges hopping among Fe related centers was confirmed by ESR spectroscopy showing maximum intensity at ca Tsim40 K.
We investigated with XMCD-PEEM magnetic imaging the magnetization reversal processes of Neel caps inside Bloch walls in self-assembled, micron-sized Fe(110) dots with flux-closure magnetic state. In most cases the magnetic-dependent processes are sym metric in field, as expected. However, some dots show pronounced asymmetric behaviors. Micromagnetic simulations suggest that the geometrical features (and their asymmetry) of the dots strongly affect the switching mechanism of the Neel caps.
113 - Ilya Belopolski 2020
Topological phases of matter have established a new paradigm in physics, bringing quantum phenomena to the macroscopic scale and hosting exotic emergent quasiparticles. In this thesis, I theoretically and experimentally demonstrate with my collaborat ors the first Weyl semimetal, TaAs, using angle-resolved photoemission spectroscopy (ARPES), directly observing its emergent Weyl fermions and topological Fermi arc surface states [Science 349, 6248 (2015); Nat. Commun. 6, 7373 (2015); PRL 116, 066802 (2016)]. Next, I discover high-degeneracy topological chiral fermions in the chiral crystals RhSi and CoSi, with wide topological energy window, maximal separation in momentum space and giant Fermi arcs [Nature 567, 500 (2019); Nat. Mat. 17, 978 (2018)]. I establish a natural relationship between the structural and topological chirality, associated with a robust topological state which we predict supports a four-unit quantized photogalvanic effect [PRL 119, 206401 (2017)]. I also discuss the first quantum topological superlattice, in multilayer heterostructures consisting of alternating topological and trivial insulators [Sci. Adv. 3, e1501692 (2017)]. The Dirac cones at each interface tunnel across layers, forming an emergent atomic chain where the Dirac cones serve as atomic orbitals. I achieve unprecedented control of hopping amplitudes within the superlattice, realizing a topological phase transition. Lastly, I discover a room-temperature topological magnet in Co$_2$MnGa [Science 365, 1278 (2019); PRL 119, 156401 (2017)]. I observe topological Weyl lines and drumhead surface states by ARPES, demonstrating a topological invariant supported by the materials intrinsic magnetic order. I also find that the large anomalous Hall effect in Co$_2$MnGa arises from the Weyl lines. I hope that my discovery of Co$_2$MnGa establishes topological magnetism as a new frontier in condensed matter physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا