ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision measurements of the Sunyaev-Zeldovich effect in clusters of galaxies require excellent rejection of common-mode signals and wide frequency coverage. We describe an imaging, efficient, differential Fourier transform spectrometer (FTS), optim ized for measurements of faint brightness gradients at millimeter wavelengths. Our instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the whole input power. In our implementation the observed sky field is divided into two halves along the meridian, and each half-field corresponds to one of the two input ports of the MPI. In this way, each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high common-mode rejection of the MPI, we can measure low sky brightness gradients over a high isotropic background. The instrument works in the range $sim$ 1$-$20 cm$^{-1}$ (30$-$600 GHz), has a maximum spectral resolution $1/(2 OPD) = 0.063 cm^{-1}$ (1.9 GHz), and an unvignetted throughput of 2.3 cm$^2$sr. It occupies a volume of 0.7$times$0.7$times$0.33 m$^3$ and has a weight of 70 kg. This design can be implemented as a cryogenic unit to be used in space, as well as a room-temperature unit working at the focus of suborbital and ground-based mm-wave telescopes. The first in-flight test of the instrument is with the OLIMPO experiment on a stratospheric balloon; a larger implementation is being prepared for the Sardinia radio telescope.
In this article we focus on the astrophysical results and the related cosmological implications derived from recent microwave surveys, with emphasis to those coming from the Planck mission. We critically discuss the impact of systematics effects and the role of methods to separate the cosmic microwave background signal from the astrophysical emissions and each different astrophysical component from the others. We then review of the state of the art in diffuse emissions, extragalactic sources, cosmic infrared back- ground, and galaxy clusters, addressing the information they provide to our global view of the cosmic structure evolution and for some crucial physical parameters, as the neutrino mass. Finally, we present three different kinds of scientific perspectives for fundamental physics and cosmology offered by the analysis of on-going and future cosmic microwave background projects at different angular scales dedicated to anisotropies in total intensity and polarization and to absolute temperature.
The Cosmic Microwave Background (CMB) is a relict of the early universe. Its perfect 2.725K blackbody spectrum demonstrates that the universe underwent a hot, ionized early phase; its anisotropy (about 80 mu K rms) provides strong evidence for the pr esence of photon-matter oscillations in the primeval plasma, shaping the initial phase of the formation of structures; its polarization state (about 3 mu K rms), and in particular its rotational component (less than 0.1 mu K rms) might allow to study the inflation process in the very early universe, and the physics of extremely high energies, impossible to reach with accelerators. The CMB is observed by means of microwave and mm-wave telescopes, and its measurements drove the development of ultra-sensitive bolometric detectors, sophisticated modulators, and advanced cryogenic and space technologies. Here we focus on the new frontiers of CMB research: the precision measurements of its linear polarization state, at large and intermediate angular scales, and the measurement of the inverse-Compton effect of CMB photons crossing clusters of Galaxies. In this framework, we will describe the formidable experimental challenges faced by ground-based, near-space and space experiments, using large arrays of detectors. We will show that sensitivity and mapping speed improvement obtained with these arrays must be accompanied by a corresponding reduction of systematic effects (especially for CMB polarimeters), and by improved knowledge of foreground emission, to fully exploit the huge scientific potential of these missions.
The Sunyaev-Zeldovich (SZ) effect is a powerful tool for studying clusters of galaxies and cosmology. Large mm-wave telescopes are now routinely detecting and mapping the SZ effect in a number of clusters, measure their comptonisation parameter and u se them as probes of the large-scale structure and evolution of the universe. We show that estimates of the physical parameters of clusters (optical depth, plasma temperature, peculiar velocity, non-thermal components etc.) obtained from ground-based multi-band SZ photometry can be significantly biased, owing to the reduced frequency coverage, to the degeneracy between the parameters and to the presence of a number of independent components larger than the number of frequencies measured. We demonstrate that low-resolution spectroscopic measurements of the SZ effect that also cover frequencies $> 270$ GHz are effective in removing the degeneracy. We used accurate simulations of observations with lines-of-sight through clusters of galaxies with different experimental configurations (4-band photometers, 6-band photometer, multi-range differential spectrometer, full coverage spectrometers) and different intracluster plasma stratifications. We find that measurements carried out with ground-based few-band photometers are biased towards high electron temperatures and low optical depths, and require coverage of high frequency and/or independent complementary observations to produce unbiased information; a differential spectrometer that covers 4 bands with a resolution of $sim 6 GHz$ eliminates most if not all bias; full-range differential spectrometers are the ultimate resource that allows a full recovery of all parameters.
Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitat ional wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle $alpha=-4.3^circpm4.1^circ$. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then $1^circ$ for Planck and $0.2circ$ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.
B-Pol is a medium-class space mission aimed at detecting the primordial gravitational waves generated during inflation through high accuracy measurements of the Cosmic Microwave Background (CMB) polarization. We discuss the scientific background, fea sibility of the experiment, and implementation developed in response to the ESA Cosmic Vision 2015-2025 Call for Proposals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا