ترغب بنشر مسار تعليمي؟ اضغط هنا

B-Pol: Detecting Primordial Gravitational Waves Generated During Inflation

98   0   0.0 ( 0 )
 نشر من قبل Paolo de Bernardis
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

B-Pol is a medium-class space mission aimed at detecting the primordial gravitational waves generated during inflation through high accuracy measurements of the Cosmic Microwave Background (CMB) polarization. We discuss the scientific background, feasibility of the experiment, and implementation developed in response to the ESA Cosmic Vision 2015-2025 Call for Proposals.



قيم البحث

اقرأ أيضاً

121 - Zihan Zhou , Jie Jiang , Yi-Fu Cai 2020
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field phi with an axion-monodromy-like periodic structure in the potential that gov erns the first stage and another field chi with a hilltop-like potential that dominates the second stage. The parametric resonance seeded by the periodic structure at the first stage amplifies the perturbations of both fields inside the Hubble radius. While the evolution of the background trajectory experiences a turn as the oscillatory barrier height increases, the amplified perturbations of chi remain as they are and contribute to the final curvature perturbation. It turns out that the primordial power spectrum displays a significant resonant peak on small scales, which can lead to an abundant production of primordial black holes. Furthermore, gravitational waves are also generated from the resonantly enhanced field perturbations during inflation, the amplitude of which may be constrained by future gravitational wave interferometers.
We present analytic results for the gravitational wave power spectrum induced in models where the inflaton is coupled to a fermionic pseudocurrent. We show that although such a coupling creates helically polarized fermions, the polarized component of the resulting gravitational waves is parametrically suppressed with respect to the non-polarized one. We also show that the amplitude of the gravitational wave signal associated to this production cannot exceed that generated by the standard mechanism of amplification of vacuum fluctuations. We previously found that this model allows for a regime in which the backreaction of the produced fermions allows for slow-roll inflation even for a steep inflaton potential, and still leads to Gaussian primordial scalar perturbations. The present analysis shows that this regime also results in a gravitational wave signal compatible with the current bounds.
138 - Keisuke Inomata 2021
We put the upper bound on the gravitational waves (GWs) induced by the scalar-field fluctuations during the inflation. In particular, we focus on the case where the scalar fluctuations get amplified within some subhorizon scales by some mechanism dur ing the inflation. Since the energy conservation law leads to the upper bound on the energy density of the scalar fluctuations, the amplitudes of the scalar fluctuations are constrained and therefore the induced GWs are also. Taking into account this, we derive the upper bound on the induced GWs. As a result, we find that the GW power spectrum must be $mathcal P_h lesssim mathcal O(epsilon^2 (k/k_*)^2)$, where $epsilon$ is the slow-roll parameter and $k_*$ is the peak scale of the scalar-field fluctuations.
We consider the space-condensate inflation model to study the primordial gravitational waves generated in the early Universe. We calculate the energy spectrum of gravitational waves induced by the space-condensate inflation model for full frequency r ange with assumption that the phase transition between two consecutive regimes to be abrupt during evolution of the Universe. The suppression of energy spectrum is found in our model for the decreasing frequency of gravitational waves depending on the model parameter. To realize the suppression of energy spectrum of the primordial gravitational waves, we study an existence of the early phase transition during inflation for the space-condensate inflation model.
123 - Qing Gao , Yungui Gong , Zhu Yi 2020
The production of primordial black hole (PBH) dark matter (DM) and the generation of scalar induced secondary gravitational waves by using the enhancement mechanism with a peak function in the non-canonical kinetic term in natural inflation is discus sed. We show explicitly that the power spectrum for the primordial curvature perturbation is enhanced at $10^{12}$ Mpc$^{-1}$, $10^{8}$ Mpc$^{-1}$ and $10^{5}$ Mpc$^{-1}$, the production of PBH DM with peak masses around $10^{-13} M_{odot}$, the earths mass and the stellar mass, and the generation of scalar induced gravitational waves (SIGWs) with peak frequencies around mHz, $10^{-6}$ Hz and nHz, respectively. The PBHs with the mass scale $10^{-13} M_{odot}$ can make up almost all the DM and the associated SIGWs is testable by spaced based gravitational wave observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا