ﻻ يوجد ملخص باللغة العربية
Precision measurements of the Sunyaev-Zeldovich effect in clusters of galaxies require excellent rejection of common-mode signals and wide frequency coverage. We describe an imaging, efficient, differential Fourier transform spectrometer (FTS), optimized for measurements of faint brightness gradients at millimeter wavelengths. Our instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the whole input power. In our implementation the observed sky field is divided into two halves along the meridian, and each half-field corresponds to one of the two input ports of the MPI. In this way, each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high common-mode rejection of the MPI, we can measure low sky brightness gradients over a high isotropic background. The instrument works in the range $sim$ 1$-$20 cm$^{-1}$ (30$-$600 GHz), has a maximum spectral resolution $1/(2 OPD) = 0.063 cm^{-1}$ (1.9 GHz), and an unvignetted throughput of 2.3 cm$^2$sr. It occupies a volume of 0.7$times$0.7$times$0.33 m$^3$ and has a weight of 70 kg. This design can be implemented as a cryogenic unit to be used in space, as well as a room-temperature unit working at the focus of suborbital and ground-based mm-wave telescopes. The first in-flight test of the instrument is with the OLIMPO experiment on a stratospheric balloon; a larger implementation is being prepared for the Sardinia radio telescope.
Kinetic inductance in thin film superconductors has been used as the basis for low-temperature, low-noise photon detectors. In particular thin films such as NbTiN, TiN, NbN, the kinetic inductance effect is strongly non-linear in the applied current,
We have constructed a Fourier-transform spectrometer (FTS) operating between 50 and 330 GHz with minimum volume (355 x260 x64 mm) and weight (13 lbs) while maximizing optical throughput (100 $mathrm{mm}^2$ sr) and optimizing the spectral resolution (
We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SP
A systematic programme of calibration observations was carried out to monitor the performance of the SPIRE FTS instrument on board the Herschel Space Observatory. Observations of planets (including the prime point-source calibrator, Uranus), asteroid
We present an overview of SITELLE, an Imaging Fourier Transform Spectrometer (iFTS) available at the 3.6-meter Canada-France-Hawaii Telescope. SITELLE is a Michelson-type interferometer able to reconstruct the spectrum of every light source within it