ترغب بنشر مسار تعليمي؟ اضغط هنا

223 - Paolo Aniello 2019
We introduce the notion of stochastic product as a binary operation on the convex set of quantum states (the density operators) that preserves the convex structure, and we investigate its main consequences. We consider, in particular, stochastic prod ucts that are covariant wrt a symmetry action of a locally compact group. We then construct an interesting class of group-covariant, associative stochastic products, the so-called twirled stochastic products. Every binary operation in this class is generated by a triple formed by a square integrable projective representation of a locally compact group, by a probability measure on that group and by a fiducial density operator acting in the carrier Hilbert space of the representation. The salient properties of such a product are studied. It is argued, in particular, that, extending this binary operation from the density operators to the whole Banach space of trace class operators, this space becomes a Banach algebra, a so-called twirled stochastic algebra. This algebra is shown to be commutative in the case where the relevant group is abelian. In particular, the commutative stochastic products generated by the Weyl system are treated in detail. Finally, the physical interpretation of twirled stochastic products and various interesting connections with the literature are discussed.
37 - Paolo Aniello 2018
Group representations play a central role in theoretical physics. In particular, in quantum mechanics unitary --- or, in general, projective unitary --- representations implement the action of an abstract symmetry group on physical states and observa bles. More specifically, a major role is played by the so-called square integrable representations. Indeed, the properties of these representations are fundamental in the definition of certain families of generalized coherent states, in the phase-space formulation of quantum mechanics and the associated star product formalism, in the definition of an interesting notion of function of quantum positive type, and in some recent applications to the theory of open quantum systems and to quantum information.
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigners theorem, the set of pure states, the rank-one projections, is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the set of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e., reasoning in terms of quantum states, the sets of uniform density operators of corresponding fixed rank are symmetry witnesses too.
We propose a new point of view regarding the problem of time in quantum mechanics, based on the idea of replacing the usual time operator $mathbf{T}$ with a suitable real-valued function $T$ on the space of physical states. The proper characterizatio n of the function $T$ relies on a particular relation with the dynamical evolution of the system rather than with the infinitesimal generator of the dynamics (Hamiltonian). We first consider the case of classical Hamiltonian mechanics, where observables are functions on phase space and the tools of differential geometry can be applied. The idea is then extended to the case of the unitary evolution of pure states of finite-level quantum systems by means of the geometric formulation of quantum mechanics. It is found that $T$ is a function on the space of pure states which is not associated to any self-adjoint operator. The link between $T$ and the dynamical evolution is interpreted as defining a simultaneity relation for the states of the system with respect to the dynamical evolution itself. It turns out that different dynamical evolutions lead to different notions of simultaneity, i.e., the notion of simultaneity is a dynamical notion.
In finite dimensions, we provide characterizations of the quantum dynamical semigroups that do not decrease the von Neumann, the Tsallis and the Renyi entropies, as well as a family of functions of density operators strictly related to the Schatten n orms. A few remarkable consequences --- in particular, a description of the associated infinitesimal generators --- are derived, and some significant examples are discussed. Extensions of these results to semigroups of trace-preserving positive (i.e., not necessarily completely positive) maps and to a more general class of quantum entropies are also considered.
357 - Paolo Aniello 2014
A function of positive type can be defined as a positive functional on a convolution algebra of a locally compact group. In the case where the group is abelian, by Bochners theorem a function of positive type is, up to normalization, the Fourier tran sform of a probability measure. Therefore, considering the group of translations on phase space, a suitably normalized phase-space function of positive type can be regarded as a realization of a classical state. Thus, it may be called a function of classical positive type. Replacing the ordinary convolution on phase space with the twisted convolution, one obtains a noncommutative algebra of functions whose positive functionals we may call functions of quantum positive type. In fact, by a quantum version of Bochners theorem, a continuous function of quantum positive type is, up to normalization, the (symplectic) Fourier transform of a Wigner quasi-probability distribution; hence, it can be regarded as a phase-space realization of a quantum state. Playing with functions of positive type, classical and quantum, one is led in a natural way to consider a class of semigroups of operators, the classical-quantum semigroups. The physical meaning of these mathematical objects is unveiled via quantization, so obtaining a class of quantum dynamical semigroups that, borrowing terminology from quantum information science, may be called classical-noise semigroups.
108 - Paolo Aniello 2013
Quantum mechanics can be formulated in terms of phase-space functions, according to Wigners approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called gen eralized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup in disguise, namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The disguised counterparts of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.
The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds c an be efficiently calculated by restricting to Gaussian encodings, for which we provide analytical expressions.
98 - Paolo Aniello 2010
We define an interesting class of semigroups of operators in Banach spaces, namely, the randomly generated semigroups. This class contains as a remarkable subclass a special type of quantum dynamical semigroups introduced by Kossakowski in the early 1970s. Each randomly generated semigroup is associated, in a natural way, with a pair formed by a representation or an antirepresentation of a locally compact group in a Banach space and by a convolution semigroup of probability measures on this group. Examples of randomly generated semigroups having important applications in physics are briefly illustrated.
84 - Paolo Aniello 2009
Adopting a purely group-theoretical point of view, we consider the star product of functions which is associated, in a natural way, with a square integrable (in general, projective) representation of a locally compact group. Next, we show that for th is (implicitly defined) star product explicit formulae can be provided. Two significant examples are studied in detail: the group of translations on phase space and the one-dimensional affine group. The study of the first example leads to the Groenewold-Moyal star product. In the second example, the link with wavelet analysis is clarified.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا