ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering the manifold facets of a square integrable representation: from coherent states to open systems

38   0   0.0 ( 0 )
 نشر من قبل Paolo Aniello
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paolo Aniello




اسأل ChatGPT حول البحث

Group representations play a central role in theoretical physics. In particular, in quantum mechanics unitary --- or, in general, projective unitary --- representations implement the action of an abstract symmetry group on physical states and observables. More specifically, a major role is played by the so-called square integrable representations. Indeed, the properties of these representations are fundamental in the definition of certain families of generalized coherent states, in the phase-space formulation of quantum mechanics and the associated star product formalism, in the definition of an interesting notion of function of quantum positive type, and in some recent applications to the theory of open quantum systems and to quantum information.

قيم البحث

اقرأ أيضاً

It is shown that planar quantum dynamics can be related to 3-body quantum dynamics in the space of relative motion with a special class of potentials. As an important special case the $O(d)$ symmetry reduction from $d$ degrees of freedom to one degre e is presented. A link between two-dimensional (super-integrable) systems and 3-body (super-integrable) systems is revealed. As illustration we present number of examples. We demonstrate that the celebrated Calogero-Wolfes 3-body potential has a unique property: two-dimensional quantum dynamics coincides with 3-body quantum dynamics on the line at $d=1$; it is governed by the Tremblay-Turbiner-Winternitz potential for parameter $k=3$.
In the first part of the paper, we classify linear integrable (multi-dimensionally consistent) quad-equations on bipartite isoradial quad-graphs in $mathbb C$, enjoying natural symmetries and the property that the restriction of their solutions to th e black vertices satisfies a Laplace type equation. The classification reduces to solving a functional equation. Under certain restriction, we give a complete solution of the functional equation, which is expressed in terms of elliptic functions. We find two real analytic reductions, corresponding to the cases when the underlying complex torus is of a rectangular type or of a rhombic type. The solution corresponding to the rectangular type was previously found by Boutillier, de Tili`ere and Raschel. Using the multi-dimensional consistency, we construct the discrete exponential function, which serves as a basis of solutions of the quad-equation. In the second part of the paper, we focus on the integrability of discrete linear variational problems. We consider discrete pluri-harmonic functions, corresponding to a discrete 2-form with a quadratic dependence on the fields at black vertices only. In an important particular case, we show that the problem reduces to a two-field generalization of the classical star-triangle map. We prove the integrability of this novel 3D system by showing its multi-dimensional consistency. The Laplacians from the first part come as a special solution of the two-field star-triangle map.
The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in various concrete examples of finite-dimensional integrable systems. The goal of the present paper is to give a brief overview of monodromy and discuss some of its generalisations. In particular, we will discuss the monodromy around a focus-focus singularity and the notions of quantum, fractional and scattering monodromy. The exposition will be complemented with a number of examples and open problems.
We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over $C^*$-algebras are the natural settings for a generalization of coherent state s defined on Hilbert spaces. We consider those Hilbert $C^*$-modules which have a natural left action from another $C^*$-algebra say, $mathcal A$. The coherent states are well defined in this case and they behave well with respect to the left action by $mathcal A$. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive kernel between two $C^*$-algebras, in complete analogy to the Hilbert space situation. Related to this there is a dilation result for positive operator valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory.
We consider the generic quadratic first integral (QFI) of the form $I=K_{ab}(t,q)dot{q}^{a}dot{q}^{b}+K_{a}(t,q)dot{q}^{a}+K(t,q)$ and require the condition $dI/dt=0$. The latter results in a system of partial differential equations which involve the tensors $K_{ab}(t,q)$, $K_{a}(t,q)$, $K(t,q)$ and the dynamical quantities of the dynamical equations. These equations divide in two sets. The first set involves only geometric quantities of the configuration space and the second set contains the interaction of these quantities with the dynamical fields. A theorem is presented which provides a systematic solution of the system of equations in terms of the collineations of the kinetic metric in the configuration space. This solution being geometric and covariant, applies to higher dimensions and curved spaces. The results are applied to the simple but interesting case of two-dimensional (2d) autonomous conservative Newtonian potentials. It is found that there are two classes of 2d integrable potentials and that superintegrable potentials exist in both classes. We recover most main previous results, which have been obtained by various methods, in a single and systematic way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا