ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum spin-Hall edges are envisaged as next-generation transistors, yet they exhibit dissipationless transport only over short distances. Here we show that in a diffusive sample, where charge puddles with odd spin cause back-scattering, a magnetic field drastically increases the mean free path and drives the system into the ballistic regime with a Landauer-Buttiker conductance. A strong non-linear non-reciprocal current emerges in the diffusive regime with opposite signs on each edge, and vanishes in the ballistic limit. We discuss its detection in state-of-the-art experiments.
Quantum geometry of the electron wave function plays a significant role in the linear and non-linear responses of crystalline materials. Here, we study quantum geometry induced second harmonic generation. We identify non-linear responses stemming fro m the quantum geometric tensor and the quantum geometric connection in systems with finite Fermi surfaces and disorder. In addition to the injection, shift, and anomalous currents we find two new contributions, which we term double resonant and higher-order pole contributions. Our findings can be tested in state-of-the-art devices in WTe2 (time-reversal symmetric system) and in CuMnAs (parity-time reversal symmetric systems).
Topological edge states exhibit dissipationless transport and electrically-driven topological phase transitions, making them ideal for next-generation transistors that are not constrained by Moores law. Nevertheless, their dispersion has never been p robed and is often assumed to be simply linear, without any rigorous justification. Here we determine the non-linear electrical response of topological edge states in the ballistic regime and demonstrate the way this response ascertains the presence of symmetry breaking terms in the edge dispersion, such as deviations from non-linearity and tilted spin quantization axes. The non-linear response stems from discontinuities in the band occupation on either side of a Zeeman gap, and its direction is set by the spin orientation with respect to the Zeeman field. We determine the edge dispersion for several classes of topological materials and discuss experimental measurement.
Motivated by recent experimental findings, we study the contribution of a quantum critical optical phonon branch to the thermal conductivity of a paraelectric system. We consider the proximity of the optical phonon branch to transverse acoustic phono n branch and calculate its contribution to the thermal conductivity within the Kubo formalism. We find a low temperature power law dependence of the thermal conductivity as $T^{alpha}$, with $1 < alpha < 2$, (lower than $T^3$ behavior) due to optical phonons near the quantum critical point. This result is in accord with the experimental findings and indicates the importance of quantum fluctuations in the thermal conduction in these materials.
The ordinary Hall effect is driven by the Lorentz force, while its anomalous counterpart occurs in ferromagnets. Here we show that the Berry curvature monopole of non-magnetic 2D spin-3/2 holes leads to a novel Hall effect linear in an applied in-pla ne magnetic field B_x. There is no Lorentz force hence no ordinary Hall effect, while all disorder contributions vanish to leading order in B_x. This intrinsic phenomenon, which we term the anomalous planar Hall effect (APHE), provides a non-quantized footprint of topological transport directly accessible in p-type semiconductors.
The Zeeman interaction is a quantum mechanical effect that underpins spin-based quantum devices such as spin qubits. Typically, identification of the Zeeman interaction needs a large out-of-plane magnetic field coupled with ultralow temperatures, whi ch limits the practicality of spin-based devices. However, in two-dimensional (2D) semiconductor holes, the strong spin-orbit interaction causes the Zeeman interaction to couple the spin, the magnetic field, and the momentum, and has terms with different winding numbers. In this work, we demonstrate a physical mechanism by which the Zeeman terms can be detected in classical transport. The effect we predict is very strong, and tunable by means of both the density and the in-plane magnetic field. It is a direct signature of the topological properties of the 2D hole system, and a manifestation in classical transport of an effect stemming from relativistic quantum mechanics. We discuss experimental observation and implications for quantum technologies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا