ﻻ يوجد ملخص باللغة العربية
The ordinary Hall effect is driven by the Lorentz force, while its anomalous counterpart occurs in ferromagnets. Here we show that the Berry curvature monopole of non-magnetic 2D spin-3/2 holes leads to a novel Hall effect linear in an applied in-plane magnetic field B_x. There is no Lorentz force hence no ordinary Hall effect, while all disorder contributions vanish to leading order in B_x. This intrinsic phenomenon, which we term the anomalous planar Hall effect (APHE), provides a non-quantized footprint of topological transport directly accessible in p-type semiconductors.
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
The anomalous Hall effect, a hallmark of broken time-reversal symmetry and spin-orbit coupling, is frequently observed in magnetically polarized systems. Its realization in non-magnetic systems, however, remains elusive. Here, we report on the observ
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Dopin
An intriguing observation on the quantum anomalous Hall effect (QAHE) in magnetic topological insulators (MTIs) is the dissipative edge states, where quantized Hall resistance is accompanied by nonzero longitudinal resistance. We numerically investig
Geometric Berry phase can be induced either by spin-orbit coupling, giving rise to the anomalous Hall effect in ferromagnetic materials, or by chiral spin texture, such as skyrmions, leading to the topological Hall effect. Recent experiments have rev